Способность нейронов головного мозга к регенерации явилась предметом экспериментальных исследований, проводившихся в Канаде и Швеции. Сначала в мозговой ткани животного производили повреждение. Затем из другого места брали отрезки периферических нервов, аксоны которых легко регенерируют, восстанавливая утраченные связи. Концы вырезанного участка нерва вводили в ткань мозга по обе стороны от места повреждения. По-видимому, в этих условиях многие виды центральных (мозговых) нейронов способны врастать сначала в отрезок периферического нерва, а затем — из другого его конца — обратно в мозг. Экспериментальные повреждения, наносимые животным, имитировали повреждения нервной ткани, возможные у людей при травме позвоночника или проникающем ранении головы. Результаты описанного метода дают некоторые основания надеяться, что со временем будут найдены и иные способы восстановления тканей мозга.
Замена компьютерами. Центральная нервная система — по крайней мере как мы сейчас понимаем ее возможности саморегулирования — не может использовать свою потенциальную способность к регенерации. В связи с этим многие ученые ищут пути устранения некоторых дефектов сенсорной функции с помощью компьютеризованных роботоподобных устройств, которыми можно было бы даже заменять неисправные компоненты. Для того чтобы найти способ обеспечить слепых людей хотя бы примитивным «тактильным зрением», в лабораториях используют принцип видеосканирования в сочетании с кожной стимуляцией. Некоторые формы нервной глухоты поддаются экспериментальному лечению с помощью звукочувствительных приборов, вживленных прямо в улитку. Применение таких приборов возможно потому, что наши сенсорные процессы состоят из отдельных этапов, которые могут быть воспроизведены искусственными устройствами.
Сходным образом знание всех этапов, с которыми связан запуск программ мышечной активности (ходьбы, например), позволит с помощью компьютеров преодолеть последствия паралича после травмы спинного мозга. Сначала компьютеры, получающие информацию о мышечной активности от расположенных на коже электродов, зарегистрируют последовательность мышечных сокращений при ходьбе или стоянии. Затем над мышцами парализованного больного поместят кожные стимулирующие электроды, с помощью которых будут «проигрываться» соответствующие программы. Закодированные стимулы прикажут мышцам действовать. И тогда, несмотря на повреждение, парализованный человек действительно сможет стоять и ходить — ведь компьютер будет непосредственно управлять мышцами.
Искусственный интеллект. На стыке двух наук -экспериментальной науки о нервной системе и кибернетики — постепенно закладываются основы для создания таких устройств, которые в конце концов смогут воспроизводить отдельные этапы сбора и переработки информации в сложном процессе умственной деятельности человека. Одни ученые пытаются заложить в компьютеры поведенческие программы, чтобы получились более компетентные и «человекоподобные» системы. Другие стремятся создать машинные модели предполагаемых механизмов работы мозга, исходя из особенностей поведения животных или изменений активности связанных друг с другом нейронов. Затем модель подвергают проверке, пытаясь предсказать, как система будет реагировать на новые условия.
Не исключено, что в один прекрасный день мы сможем «подключать» свой мозг к компьютеру и фиксировать в его безошибочной памяти все наши ощущения и переживания. Если это когда-нибудь произойдет, мы, может быть, еще пожалеем о том, что получили возможность в точности узнавать, как что-то происходило на самом деле (в тот момент, когда мы это переживали), вместо того чтобы предаваться сладостным воспоминаниям, окутанным дымкой воображения.
Что мы сейчас знаем о мозге?
Теперь, когда наши размышления о мозге, мышлении и поведении близятся к концу, давайте еще раз вернемся к отдельным моментам главы 1, где мы пытались оспорить ваши возможные предубеждения. Возможно, некоторые ваши представления теперь изменились. И уж наверняка они имеют теперь более прочную основу.
Почему нужно изучать мозг?