Наиболее очевидный стимул для изучения мозга состоит в том, что точные знания о самом важном органе нашего тела и наиболее сложном из всех известных биологических устройств просто-напросто доставляют интеллектуальное удовлетворение. Кроме того, очень сложные биологические загадки всегда возбуждали острую любознательность ученых. Вспомним, что когда-то никто не мог себе представить, каким образом вся генетическая информация, необходимая для построения человеческого организма, может содержаться в клеточном ядре, образовавшемся при слиянии одного сперматозоида с одной яйцеклеткой. До тех пор пока ученые не проникли в тайны молекулярного строения нуклеиновых кислот, составляющих гены и хромосомы, эта проблема не имела решения. В 1953 году положение резко изменилось. Открытие истинной структуры молекул ДНК быстро дало ключ к верному решению проблемы. Каким образом иммунная система производит специфические антитела против самых разнообразных химических веществ, иногда даже таких, которые только что синтезированы химиками? До выяснения молекулярной структуры антител и молекулярно-биологического анализа ее вариаций и на этот вопрос ответа не было. Ныне известно, что в лейкоцитах, вырабатывающих антитела, возможны рекомбинации элементов генетического материала, дающие множество различных новых структур. Ученые считают, что именно эта комбинаторная способность и обеспечивает огромное разнообразие реакций иммунной системы. Будучи активирован, лейкоцит усиливает остроту своей реакции на соответствующий антигенный стимул и передает эту специфическую способность своему потомству — последующим поколениям дочерних клеток.
Все эти генетические и иммунологические загадки некогда казались столь же неразрешимыми, как и те, которые сегодня касаются мозга. Но поскольку решение первых все же было найдено, не нужно приходить в отчаяние, сталкиваясь с очевидной сложностью мозга. Знание клеточной структуры и организации мозга — это уже первый шаг на пути к пониманию того, как работают его структурные элементы, как они объединяются в комплексы и сети, благодаря совместному действию которых реализуются специфические регуляторные и поведенческие программы.
На рис. 182 и 183 суммированы два общих, но противоположно направленных подхода, которыми мы пользовались при изучении мозга на протяжении всей нашей книги. На рис. 181 представлен метод изучения «сверху вниз», когда при данной специфической форме поведения прослеживается связь ее общей схемы с нервными сетями, нейронами, синапсами и медиаторами, активируемыми для ее осуществления. Рис. 183 иллюстрирует противоположный подход, направленный «снизу вверх», при котором любой данный нейрон и вся система его синапсов с их медиаторами рассматриваются как часть специфических клеточных комплексов, служащих в свою очередь для реализации поведенческих программ в соответствии с нуждами организма.
Мозг и физическое здоровье организма
При многих заболеваниях внутренняя среда выходит из-под нормального надзора и контроля со стороны мозга. Сахарный диабет, язвенная болезнь, гипертония и астма — вот всего лишь несколько примеров. Поскольку мозг играет центральную роль в регуляции внутренней среды организма, необходимо лучше знать его функции, чтобы совершенствовать методы профилактики и лечения этих болезней. Хотя теперь вам уже кое-что известно о том, как мозг регулирует деятельность органов с периферической вегетативной иннервацией, мы все же вкратце рассмотрим еще случай сахарного диабета.
Мозг и диабет. Вам, вероятно, будет любопытно больше узнать о недуге, который каждый год поражает 600 000 новых жертв и является главной причиной потери зрения у взрослых людей, а также заболеваний сердца, почек и импотенции. В возникновении этой болезни мозг играет решающую роль. Речь идет о сахарном диабете второго типа —