Действительно, так и было, и не только в мозговой коре: опять-таки, мы обнаружили единое, универсальное соотношение между уменьшением плотности упаковки нейронов и увеличением отношения числа глиальных клеток к числу нейронов не только среди млекопитающих, но и среди разных мозговых структур, и – это надо еще раз подчеркнуть – человек не стал исключением из правила. Как показано на рис. 9.7, отношение числа глиальных клеток к числу нейронов в мозговой структуре – в любой мозговой структуре – было предсказуемой, универсальной функцией от плотности упаковки нейронов в этой структуре: чем ниже плотность нейронов, тем больше его средний размер и тем выше отношение глия/нейроны в этой ткани.
Я не могу найти подходящих слов для выражения нашего удивления: так трудно найти признак, который бы очень мало менялся в ходе эволюции, тем более что само слово «эволюция» означает изменение с течением биологического времени. Если у животных что-то не изменяется по мере развития, то либо речь идет о фундаментальном физическом ограничении – например, об универсальном соотношении между площадью поверхности и объемом, если не изменяется форма тела, или площадью поперечного сечения конечностей и массой тела, которое эти конечности поддерживают (оба эти соотношения впервые заметил Галилео Галилей), – либо о биологическом ограничении, например о том факте, что вся жизнь основана на электрохимических градиентах и пользуется одним и тем же генетическим кодом (одинаковым соответствием между основаниями ДНК и аминокислотами).
В случае клеточного состава мозга мы обнаружили не один, а два универсальных признака, два свойства, которые остались неизменными в течение всего эволюционного времени: число глиальных клеток на единицу массы ткани (плотность упаковки глиальных клеток) и соотношение между отношением глия/нейроны и средним размером нейронов, независимо от того, насколько сильно варьировали число и масса нейронов (а мы подсчитали, что эти величины варьируют в 200 раз у разных видов и в разных мозговых структурах). Учитывая то, что мы тогда знали о формировании мозговой ткани во время ее развития, мы утверждали, что оба признака можно предсказать по сценарию, согласно которому глиальные клетки добавляются в ткань мозга по закону саморегуляции, при незначительных колебаниях среднего размера клеток.
Модель становится интуитивно понятной, если мы учтем, что в ходе развития каждого мозга глиальные клетки добавляются в него только после того, как в его паренхиме, то есть в ткани, появляются нейроны[192]
. Таким образом, нейроны проникают в мозг первыми, а нейроны, насколько можно судить по сильным колебаниям плотности их упаковки, могут быть самых разнообразных размеров, как внутри отдельно взятого конкретного мозга, так и внутри одного вида, как показано на рис. 9.8, где в одной единице объема может содержаться либо очень большое число крошечных нейронов (на рисунке слева), либо очень малое число очень крупных нейронов (на рисунке справа), либо сочетание нейронов промежуточной величины. Первый сценарий осуществляется, например, в мозжечке, где мы видим огромное количество очень мелких зернистых нейронов; второй реализовывается в мозговой коре крупных парнокопытных; третий сценарий мы наблюдаем, например, в мозговой коре грызунов.