Если мысль о компьютерной музыке заставляет вас вздрагивать, напомню, что эксперименты по «автоматизации» композиции были хорошо известны еще в восемнадцатом веке, когда некоторые композиторы развлекались так называемыми «Musikalisches Würfelspie» («играми в музыкальные кости»): в этой игре броски игральных костей определяли порядок, в котором будут собраны предварительно составленные музыкальные фрагменты. Одна из этих игр была опубликована в 1792 году издателем Моцарта Николаусом Симроком в Берлине; автор остался неизвестным, но произведение было приписано самому Моцарту. Считается, что полностью достоверная рукопись Моцарта, обозначаемая K516f, является подобного рода игрой, хотя инструкции к ней не прилагаются. Запись состоит из множества двухтактовых мелодий, обозначенных строчными или заглавными буквами, а также примера их сочетания, составленного Моцартом; подобным же образом была создана в 1790 году «Филармоническая шутка» Гайдна. И Моцарт, и Гайдн – оба композитора любили игры и веселье, поэтому сложно сказать, задумывались ли эти пьесы как нечто большее, чем забавы. Но некоторые современные композиторы следуют более трезвому алгоритмическому подходу в составлении композиций; первым стоит назвать Янниса Ксенакиса, который использовал компьютеры для создания своей стохастической музыки. А серийный метод Шёнберга был псевдоматематическим алгоритмом, который впоследствии развили его приверженцы, оставляя композитору еще меньше возможностей для вмешательства.
Однако алгоритмы, основанные на случайности, могут дать результат, который большинство людей сочтет музыкальным, когда ингредиенты с самого начала ограничены и тщательно продуманы. Фрагменты из произведений Моцарта и Гайдна, привязанные к определенной тональности и умиротворяющие сами по себе, с высокой степенью вероятности могли бы сгенерироваться в нечто приятное на слух, хотя и простоватое. Алгоритм Эбчиоглу, с другой стороны, находился в пределах «приемлемых» границ благодаря тому, что принципы тональной мелодии и гармонии были заложены в его правилах. Музыка в стиле барокко в любом случае сильнее основывалась на правилах, поэтому идея сгенерированной музыки «в стиле Баха» кажется гораздо более жизнеспособной, чем «в стиле Стравинского» или даже «в стиле Бетховена».
Создание музыки на компьютере в наши дни переживает принципиально новый период: вместо того чтобы полагаться на априорные «восходящие» правила выбора каждой ноты, алгоритмы работают на более глобальном «нисходящем» уровне, извлекая для себя правила и руководящие принципы из реальных музыкальных примеров. За последние десятилетия исследования в области искусственного интеллекта проводились с использованием адаптивных нейросетей, которые могут делать обобщения, исходя из опыта, учиться распознавать типичные паттерны в раздражителях и не полагаться на точные совпадения с некоторыми заранее определенными критериями. Это, скорее всего, больше похоже на то, как работает человеческий разум, хотя не совсем ясно, точны ли параллели. Одной из самых известных попыток использовать адаптивное обучение для создания музыки был алгоритм GenJam ученого-программиста Джона Ала Байлса из Технологического института Рочестера: программа училась импровизировать джаз. Сам Байлс играет на трубе, проводит живые выступления вместе с GenJam, называя свою группу «Al Biles Virtual Quintet», и утверждает, что созданная им программа является, пожалуй, «единственной эволюционной вычислительной системой, которая на самом деле «работает музыкантом». Байлс скромно оценивает результаты своей работы. Он считает, что «после достаточного обучения музицирование GenJam может быть охарактеризовано как компетентное с некоторыми действительно достойными моментами». «Обучение» в данном случае – это процедура, с помощью которой обучающий алгоритм GenJam находит приятные варианты музыки, которую стремится воспроизвести. Это своего рода дарвиновский процесс, в котором слушатель оценивает усилия GenJam и показывает «большой палец вверх» или «большой палец вниз», чтобы помочь определить «хорошие» результаты, которые изменяются и используются в качестве основы для следующих попыток. Байлс говорит, что импровизация GenJam обычно становится терпимой после примерно десяти поколений попыток, но первые несколько могут быть «весьма ошеломляющими для наставника».[82]