Читаем Начертательная геометрия: конспект лекций полностью

Аналогично можно доказать, что и любые другие одноименные проекции обеих прямых также будут параллельны друг другу.

Верно и обратное утверждение: прямые параллельны, если на эпюре их одноименные проекции параллельны.


Если известно, что горизонтальные и фронтальные проекции прямых I и II параллельны, будет справедливо следующее: 1 || 2 и 1́|| 2́ (рис. 29).

В этом случае можно сказать, что плоскости РI и РII, проецирующие прямые I и II на горизонтальную плоскость, параллельны, так как в этих плоскостях можно указать по паре пересекающихся соответственно параллельных прямых (прямые 1 и 2 и проецирующие лучи). Аналогично плоскости QI и QII будут параллельны.

Прямая I находится в пересечении плоскостей РI и QI, а прямая II – в пересечении плоскостей РII QII. Отсюда получаем, что прямая I параллельна плоскости РII, потому что находится в плоскости, ей параллельной. Однако прямая I параллельна и плоскости QII. Поэтому прямая I параллельна линии пересечения плоскостей РII и QII, т. е. прямой II.


Доказательство обратного утверждения не имеет смысла для профильных прямых. Это объясняется тем, что тогда вместо двух плоскостей, проецирующих прямую на горизонтальную и фронтальную плоскости, существует только одна, дважды проецирующая плоскость (рис. 30).

Видно, что вне зависимости от расположения двух профильных прямых I и II в пространстве их горизонтальные и фронтальные проекции всегда параллельны (или сливаются).

Прямые будут являться скрещивающимися, если они не параллельны и не пересекаются. Это вытекает из того, что возможны только три случая взаимного расположения прямых.

Для скрещивающихся прямых справедливы утверждения:

1) точки пересечения одноименных проекций на горизонтальной и фронтальной плоскостях не лежат на одном перпендикуляре к оси х (прямые I и II на рис. 31).

2) хотя бы в одной паре одноименные проекции не параллельны (прямые III и IV на рис. 31).

Рисунок 31 показывает проекции четырех прямых, любая пара из которых скрещивается.

Как и в рассмотренных ранее случаях, обратное утверждение для скрещивающихся прямых несправедливо при условии, что хотя бы одна из прямых является профильной.

5. Перпендикулярные прямые

Рассмотрим теорему: если одна сторона прямого угла параллельна плоскости проекций (или лежит в ней), то прямой угол проецируется на эту плоскость без искажения.

Приведем доказательство для прямого угла ABC, одна сторона которого ВС параллельна горизонтальной плоскости (рис. 32).


Плоскость, в которой находится сторона угла АВ и ее проекция ab, перпендикулярна горизонтальной плоскости, так как содержит перпендикуляр Вb к этой плоскости. Прямая ВС перпендикулярна плоскости Q вследствие ее перпендикулярности двум пересекающимся прямым этой плоскости (АВ и Вb). Прямая bc параллельна ВС, т. е. она также перпендикулярна Q, а значит и прямой ab, которая лежит в ней.

Ясно, что если на эпюре одна пара одноименных проекций двух прямых перпендикулярна, а одна из двух остальных проекций параллельна оси х, то такие прямые образуют в пространстве прямой угол.

Предположим, что abbc, b́с́ || x.

Это показано на рисунке 33.

Можно провести через проекцию аb плоскость Q, проектирующую прямую АВ на горизонтальную плоскость (рис. 33). Проекция перпендикулярна плоскости Q вследствие того, что она перпендикулярна двум прямым этой плоскости, т. е. проекции аb (по условию), и проецирующему лучу Вb как перпендикуляру горизонтальной плоскости.


Прямая ВС является параллельной горизонтальной плоскости, так как ее фронтальная проекция параллельна оси х, поэтому она параллельна своей горизонтальной проекции, т. е. справедливо выражение ВС || . Следовательно, прямая ВС перпендикулярна плоскости Q и поэтому перпендикулярна прямой АВ вне зависимости от ее положения в плоскости Q.

Через некоторую точку М можно провести огромное количество прямых, которые перпендикулярны данной прямой АВ. Они образуют целую плоскость Р, перпендикулярную АВ (рис. 34).

Из всех перпендикулярных прямых, которые при этом образуются, только одна пересекает данную прямую. Это прямая MN, которая проходит через точку N пересечения прямой АВ и плоскости Р.

Под перпендикуляром к прямой подразумевается прямая, не только перпендикулярная данной прямой, но и пересекающая в отличие от просто перпендикулярных скрещивающиеся прямые.

Прямой угол между скрещивающимися прямыми проецируется на данную плоскость проекций без искажения, если одна из прямых параллельна этой плоскости или лежит в ней.

Лекция № 4. Плоскость

1. Определение положения плоскости

Для произвольно расположенной плоскости проекции ее точек заполняют все три плоскости проекций. Поэтому не имеет смысла говорить о проекции всей плоскости целиком, нужно рассматривать лишь проекции таких элементов плоскости, которые ее определяют.

На основании законов стереометрии плоскость определяется, когда известны принадлежащие ей:

1) три точки, не лежащие на одной прямой;

2) прямая и точка, не находящаяся на этой прямой;

Перейти на страницу:

Все книги серии Экзамен в кармане

Антикризисное управление: конспект лекций
Антикризисное управление: конспект лекций

Конспект лекций соответствует требованиям Государственного образовательного стандарта высшего профессионального образования.Доступность и краткость изложения позволяют быстро и легко получить основные знания по предмету, подготовиться и успешно сдать зачет и экзамен.Рассматриваются понятия экономических признаков на макро– и микроуровнях, принципы в тенденциях макро– и микроэкономики, признаки и порядок установления банкротства предприятий, стратегия и тактика антикризисного управления, ключевые факторы антикризисного управления, особое внимание уделено управлению персоналом кризисного предприятия.Для студентов экономических вузов и колледжей, а также тех, кто самостоятельно изучает данный предмет.

Елена Алексеевна Бабушкина , Елена Бабушкина , Людмила Верещагина , Людмила Сергеевна Верещагина , Олеся Бирюкова , Олеся Юрьевна Бирюкова

Маркетинг, PR / Управление, подбор персонала / Финансы и бизнес

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука