Читаем Начертательная геометрия: конспект лекций полностью

Часто в качестве вспомогательной прямой применяют горизонталь или фронталь, хотя можно применять и прямые общего положения.

Покажем построение в плоскости Р произвольной точки (рис. 44).


Для выполнения задания необходимо провести любую горизонталь Г этой плоскости и на ней выбрать некоторую точку М. Данная точка принадлежит плоскости, следовательно, задача выполнена.

6. Построение следов плоскости

Рассмотрим построение следов плоскости Р, которая задана парой пересекающихся прямых I и II (рис. 45).

Если прямая находится на плоскости Р, то ее следы лежат на одноименных следах плоскости. Поэтому следы плоскости, которые необходимо найти, должны проходить через одноименные следы всех прямых, находящихся в этой плоскости, т. е. находим следы обеих прямых I и II. Соединив их горизонтальные следы h1 и h2, можно получить горизонтальный след Ph плоскости Р, а если соединить фронтальные 1, и 2, можно получить фронтальный след Pv.


Оба следа Ph и Р должны пересекаться на оси х в точке схода Рх или оказаться одновременно ей параллельными. Таким способом осуществляется проверка правильности построения, т. е. для построения следов плоскости возможно ограничиться нахождением любых трех следов двух прямых, определяющих плоскость.

7. Различные положения плоскости

Плоскостью общего положения называется плоскость, не параллельная и не перпендикулярная ни одной плоскости проекций. Следы такой плоскости также не параллельны и не перпендикулярны осям проекций.

Проецирующие плоскости – это плоскости, которые перпендикулярны одной, и только одной, плоскости проекций.

На рисунке 46 показана горизонтально-проектирующая плоскость Р, которая перпендикулярна горизонтальной плоскости; на рисунке 47 – фронтально-проектирующая плоскость Q, которая перпендикулярна фронтальной плоскости, и на рисунке 48 – профильно-проектирующая плоскость R, которая перпендикулярна профильной плоскости.


Среди свойств проецирующих плоскостей можно выделить следующие.

1. На одну из плоскостей проекций, т. е. на ту, которой данная плоскость перпендикулярна, эта плоскость проецируется в виде прямой линии. В этом случае говорят о проекции плоскости, подразумевая под ней именно эту прямую. Горизонтальнопроектирующая плоскость Р имеет горизонтальную проекцию р (рис. 46), фронтально-проецирующая плоскость Q – фронтальную проекцию (рис. 47), а профильно-проецирующая R – профильную проекцию (рис. 48). Данные проекции совпадают с одноименными следами плоскостей, т. е. p = Ph (рис. 46), = Qv (рис. 47) и = Rw (рис. 48).


2. Любая фигура, которая лежит в проецирующей плоскости, проецируется в виде отрезка прямой на плоскость проекций, перпендикулярную данной плоскости, т. е. треугольник ABC, который лежит в плоскости Р (рис. 46), имеет горизонтальную проекцию abc на горизонтальной проекции плоскости Р (р = Ph).

3. Фронтали горизонтально-проецирующей плоскости Р (рис. 47) перпендикулярны горизонтальной плоскости, а горизонтали фронтально-проектирующей плоскости Q (рис. 47) перпендикулярны фронтальной плоскости, т. е. перпендикулярность фронталей горизонтальной плоскости определяет горизонтально-проектирующую плоскость, а перпендикулярность горизонталей фронтальной плоскости является признаком фронтально-проектирующей плоскости. Профильно-проектирующая плоскость Р (рис. 47) имеет горизонтали, которые являются одновременно и фронталями; те и другие в этом случае перпендикулярны профильной плоскости.


4. Горизонтально-проектирующая плоскость Р параллельна оси z, поэтому ее следы Рv и Pw также являются параллельными оси z. Фронтально-проектирующая плоскость Q параллельна оси у, поэтому Qh и Qw параллельны оси у. Профильно-проектирующая плоскость R параллельна оси х, и ее следы Rh и Rvпараллельны оси х. Третьи следы этих плоскостей, а именно Ph, Qv и Rw, способны занимать любое положение относительно осей проекций в зависимости от углов наклона этих плоскостей к плоскостям проекций.

5. Проектирующие плоскости с плоскостями проекции образуют углы, размеры которых видны на эпюре. На рисунках 46, 47 и 48 обозначен буквой угол между проектирующей плоскостью и горизонтальной плоскостью, буквой – угол с фронтальной плоскостью и буквой – с профильной плоскостью. Важно, что для данных плоскостей один из этих углов обязательно прямой, а два остальных угла составляют в сумме 90°. Данные два угла на эпюре равны углам, которые образуются следами плоскости с осями проекций.


Рассмотрим плоскость, которая содержит ось х. Эта плоскость (рис. 49) принадлежит к числу профильно-проектирующих; она перпендикулярна профильной плоскости W, так как содержит ось х.

При этом горизонтальный и фронтальный следы Rh и Rv сливаются с осью х и не определяют положения плоскости R в пространстве. Для определения плоскости нужно дополнительно задать ее профильную проекцию ( = Rw) (рис. 49) или указать положение какой-либо точки А на этой плоскости (рис. 49).

Перейти на страницу:

Все книги серии Экзамен в кармане

Антикризисное управление: конспект лекций
Антикризисное управление: конспект лекций

Конспект лекций соответствует требованиям Государственного образовательного стандарта высшего профессионального образования.Доступность и краткость изложения позволяют быстро и легко получить основные знания по предмету, подготовиться и успешно сдать зачет и экзамен.Рассматриваются понятия экономических признаков на макро– и микроуровнях, принципы в тенденциях макро– и микроэкономики, признаки и порядок установления банкротства предприятий, стратегия и тактика антикризисного управления, ключевые факторы антикризисного управления, особое внимание уделено управлению персоналом кризисного предприятия.Для студентов экономических вузов и колледжей, а также тех, кто самостоятельно изучает данный предмет.

Елена Алексеевна Бабушкина , Елена Бабушкина , Людмила Верещагина , Людмила Сергеевна Верещагина , Олеся Бирюкова , Олеся Юрьевна Бирюкова

Маркетинг, PR / Управление, подбор персонала / Финансы и бизнес

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука