Эти особенности и требования к определению параметров движения космической ракеты максимально полно учтены в автоматизированном измерительном комплексе. Комплекс позволяет измерять текущую наклонную дальность до ракеты с высокой точностью и два угла на ракету: азимут и угол места. Данные измерений, получаемые на измерительном пункте, преобразуются в двоичный код, проходят предварительную обработку и привязываются к астрономическому времени. Все указанные операции производятся специальными цифровыми информационными машинами. Эти же информационные машины обеспечивают автоматическую выдачу измеренных данных в линии связи как в режиме измерений, так и в режиме выдачи запомненной информации. В вычислительном центре поступающая информация с помощью специальных электронных устройств автоматически декодируется и перфорируется на картах, которые в дальнейшем вводятся в электронные вычислительные машины. По данным измерений, поступивших с различных измерительных пунктов, вычислительные машины производят расчет начальных условий движения ракеты, целеуказаний и координат точки встречи ракеты с Луной.
С целью получения наиболее полных данных о движении космической ракеты на всем участке полета ракеты вплоть до Луны производились непрерывные измерения дальности до ракеты, радиальной скорости ее движения (скорости удаления от измерительного пункта) и угловых координат: угла места и азимута. Измерения производились на частоте 183,6 мегагерца.
Данные научных наблюдений, произведенных на борту космической ракеты, и сведения об условиях работы измерительной и радиотехнической аппаратуры (температура и давление) передавались и регистрировались наземными телеметрическими станциями. Передача научных данных производилась с помощью радиопередатчиков, работавших на частотах 183,6, 39,986 и 19,993 мегагерца. Все перечисленные радиотехнические средства были установлены в контейнере.
Радионаблюдения за полетом последней ступени ракеты осуществлялись по передатчику, работавшему на двух частотах: 19,997 и 20,003 мегагерца. По этому же радиоканалу передавалась дополнительная научная информация об интенсивности космического излучения с прибора, установленного не в контейнере, а на борту последней ступени ракеты.
Таким образом, в наблюдении за второй советской космической ракетой принимал участие большой комплекс радиотехнических средств, размещенных на специальных измерительных пунктах в различных частях территории Советского Союза. Все измерительные пункты были объединены системой специальной связи, обеспечивающей оперативную передачу данных измерений в вычислительный центр и целеуказаний на измерительные пункты.
Для координации работы измерительных средств по времени привязки результатов измерений к единому времени использовалась разработанная для этой цели служба единого времени.
Предварительная обработка данных измерений, поступивших через 20-30 минут со всех измерительных пунктов Советского Союза по автоматическим линиям связи в вычислительный центр, позволила в течение первого часа полета космической ракеты рассчитать траекторию ее дальнейшего движения, убедиться, что она выведена достаточно точно для попадания в Луну, рассчитать целеуказания для последующих измерений и наблюдений как советским, так и зарубежным измерительным станциям. По этим данным было определено, что предполагаемая точка встречи находится в северной части видимого диска Луны.
Последующая уточненная обработка этих данных и привлечение большой дополнительной информации по измерениям дальности и радиальной скорости ракеты дали возможность уточнить место и время встречи ракеты с Луной. Было установлено, что точка встречи располагается в районе моря «Ясности» в 800 километрах от центра видимого диска Луны.
Успешный полет второй советской космической ракеты на Луну является важнейшим этапом на пути исследования космического пространства и небесных тел.
♦
ОПЫТЫ В КОСМОСЕС. ВЕРНОВ, член-корреспондент АН СССР
Ракеты, созданные гением конструкторов, дали возможность физикам производить свои опыты непосредственно в космосе. Совсем недавно процессы, проходившие даже в непосредственной близости от Земли, нередко оказывались скрытыми от ученых. До полетов спутников мы не знали, например, что вокруг нашей планеты вращается большое число частиц со скоростями, близкими к световой. Их перемещение не сопровождается испусканием лучей, которые можно было бы заметить с Земли.
Но что же представляют собой радиационные пояса, и по какой причине вокруг Земли вращается столь большое число частиц? Начиная с полета второго советского спутника Земли мы упорно ищем ответ на эти вопросы.
Магнитное поле Земли представляет собой преграду для движения частиц, обладающих электрическим зарядом. Эти частицы сильно отклоняются в таком поле. В итоге электрически заряженная частица двигается в магнитном поле по определенным, сильно искривленным траекториям. Зная их, нетрудно убедиться, что у Земли существует ловушка для частиц.