Читаем Научная революция XVII века полностью

Ответ Гука не заставил себя ждать. В письме от 6 января 1680 г. он писал: «Но мое предположение состоит в том, что притяжение всегда действует в обратном двойном отношении к расстоянию от центра, и следовательно, скорость будет в половинном отношении к притяжению, и следовательно, как Кеплер полагал, обратна к расстоянию» [4, II, с. 309].

Гук утверждал также, что его представление «является весьма удобопонятным и истинно объясняет все явления на небе» и что «нахождение свойств кривой, выведенное из свойств двух принципов, будет весьма важным для человечества», так как определение долготы по астрономическим данным есть его неооходимое следствие. Спустя несколько дней Гук отваживается на прямой вызов Ньютону: «Теперь остается узнать свойства кривой линии (ни круговой, ни концентрической), определяемой центральной силой притяжения, которая определяет скорости уклонения от касательной линии или равного прямого движения на всех расстояниях в двойном обратном отношении к расстояниям. Я не сомневаюсь, что при помощи Вашего замечательного метода Вы сможете легко найти, что это должна быть за кривая и каковы ее свойства, а также предложить физическое объяснение этого отношения» [Письмо Гука Ньютону 17 января 1680 г. 4, II, с. 313].

Ньютон тогда не ответил, но вызов принял. Как следует из исследований Херивела [13, с. 247—253], Ньютон в начале 1680 г. доказал, что в поле силы, подчиняющейся закону обратных квадратов, планета движется по эллиптической орбите. Позднее он сам так рассказывал об этом: «Я нашел, что каков бы ни был закон сил, удерживающих планеты на орбите, площади, описываемые радиусом, проведенным от них к Солнцу, будут пропорциональны временам описания. И... что эти орбиты будут эллипсами, как описал Кеплер, если силы, удерживающие их на орбитах вокруг Солнца, понимаются обратно пропорциональными квадратам их расстояний от Солнца» [14, с. 293].

Однако прошло еще четыре года, прежде чем кто-либо об этом узнал. К 1684 г. вопрос о том, как получить законы Кеплера исходя из общих принципов механики, стал одним из центральных в среде английских ученых. В январе 1684 г. он стал предметом обсуждения на заседании Королевского общества, где присутствовали астроном Галлей, архитектор Рен и Гук. Гук заявил, что он может вывести все законы Кеплера из предположения, что сила притяжения убывает обратно пропорционально квадрату расстояния, но доказательства не представил. Тогда Рен предложил приз — книгу стоимостью в 2 фунта — тому, кто решит эту проблему в течение двух месяцев. Но два месяца прошли, а решение все еще не было найдено. Дело сдвинулось с мертвой точки лишь тогда, когда в августе 1684 г. обратились к Ньютону. По свидетельству Де Муавра, записанного со слов Ньютона, все произошло так: «В 1684 г. доктор Галлей посетил его в Кембридже. Спустя некоторое время после приезда доктор спросил его, какой по его мнению должна быть кривая, которую описывает вокруг Солнца планета, в предположении, что сила притяжения к Солнцу обратно пропорциональна квадрату расстояния от него. Сэр Исаак немедленно ответил, что кривая будет эллипсом. Доктор в возбуждении спросил, откуда ему это известно. Я рассчитал, — ответил тот. Тогда доктор Галлей попросил сейчас же показать расчеты. Сэр Исаак порылся в бумагах, но найти их не смог. Тем не менее он пообещал возобновить расчеты и послать их Галлею» [2, с. 403].

Ньютон сдержал свое обещание: в ноябре того же года Галлей получил небольшой трактат (в нем было всего девять страниц), озаглавленный «О движении тел по орбите» («De motu corporum ingirum»). В нем не только было доказано, что эллиптическая форма орбиты обусловливает закон обратных квадратов для притяжения тела, помещенного в фокусе, но было также намечено доказательство первоначальной задачи, поставленной Гуком в 1680 г.: из закона обратных квадратов следует, что орбита представляет собой коническое сечение, которое является эллипсом, если скорость планеты не превышает некоторой величины. Кроме того, в трактате выводились второй и третий законы Кеплера и рассматривалось движение снаряда в сопротивляющейся среде.

«De motu» открывается двумя определениями и двумя гипотезами. В Определении I Ньютон вводит в механику новое понятие: «Я называю то, посредством чего тело направляется или притягивается к некоторой точке, рассматриваемой как центр, центростремительной силой» [13, с. 277]. Позднее Ньютон объяснил, что назвал силу «центростремительной» (vis centripeta) no аналогии с гюйгенсовским термином «центробежная сила» (vis centrif uga).

Затем следует Определение II, касающееся прямолинейного движения: «Я называю то, посредством чего тело стремится продолжать пребывать в движении по прямой линии, силой тела или врожденной силой».

Гипотеза II расширяет это определение до фундаментального закона: «Под действием одной лишь врожденной силы каждое тело движется по прямой линии бесконечно, если только что-либо этому не препятствует» [13, с. 277].

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже