Доказательство каждого из этих пунктов наталкивается на очень серьезные трудности. Все больше историков математики склоняется к тому, что приложение площадей вовсе не было переформулировкой алгебраических методов, а возникло на греческой почве в ходе решения чисто геометрических проблем.[534]
Вавилонские решения сложны, требуют специального интереса и специальной же подготовки и потому едва ли могли проникнуть в Грецию, передаваясь из рук в руки (как это было, вероятно, с данными, позволившими Фалесу «предсказать» дату солнечного затмения). О греческом математике, устроившемся в обучение к вавилонскому «коллеге», говорить всерьез не приходится. Помимо всего прочего, у нас нет данных о том, чтобы подобный тип математики практиковался в Вавилоне в VI в.: все наличные тексты относятся к старовавилонскому периоду.[535] Наконец, можно ли предположить, что за две с лишним тысячи лет до того, как Декарт создал аналитическую геометрию, нашелся человек, сумевший перевести вавилонские задачи на язык геометрических теорем?[536]В самой гипотезе о заимствовании численных решений квадратных уравнений едва ли есть какая-то необходимость: в древнекитайской математике, например, имеются задачи, очень похожие на теоремы II книги Евклида, но возникли они, по всей видимости, без всякого внешнего влияния.[537]
То же самое справедливо и в отношении метода расчета «пифагоровых троек» — численного значения сторон в прямоугольном треугольнике, в котором также видят результат вавилонского влияния. Между тем найденный Пифагором метод органически связан с его исследованиями четных и нечетных чисел: это видно хотя бы потому, что он справедлив только для нечетных чисел.[538] Нам известна вавилонская таблица с целым рядом таких троек,[539] но знали ли вавилоняне общий метод для их расчета и как заполнить лакуну между VI в. и эпохой Хаммурапи; к которой относятся вавилонские тексты, остается неясным.Вызывает возражение и сама постановка вопроса в таком виде. Резонно ли за сходством отдельных математических положений видеть непременно чье-то заимствование, а не результат независимого развития? Основы математики носят универсальный характер и коренятся в способности человеческого разума к логическому постижению объективного строения мира. Если математики разных культур, отталкиваясь от этих универсальных принципов, приходят к сходным результатам, само по себе это не может быть аргументом в пользу заимствования.[540]
Обнаружив в разных регионах два сосуда одинаковой формы, расцветки и узора, естественно предположить некую связь между ними, ибо этого сходства могло и не быть и оно требует какого-то объяснения. Если же в Египте и Китае мы находим одинаковую формулу объема усеченной пирамиды с квадратным основанием, то предполагать здесь влияние или общий источник вовсе не обязательно,[541] ибо существует только одна верная формула данного объема, и тот, кто захочет ее найти, в принципе может это сделать. На мысль о внешних влияниях нас могут навести либо факты, говорящие о том, что в данной традиции эта формула не могла быть выведена, либо такое совпадение частных деталей, которое трудно объяснить независимым развитием.Признавая восточные вычисления первым этапом развития математики, а греческую дедуктивную геометрию — вторым, мы видим между ними логическую связь, но следует ли отсюда историческая преемственность? Ведь при этом из поля зрения выпадает греческая практическая математика, которая, хотя и не была столь развита, как вавилонская, несомненно включала в себя многие факты, служившие материалом для доказательств первых математиков.[542]
Характерно, что вся терминология греческой математики — местного происхождения (за исключением слова «пирамида»), причем многие термины пришли из практической сферы.[543] Это еще раз ставит под сомнение реальность заимствований — они, как правило, оставляют свой след и в языке.Теория отнюдь не обязательно появляется на определенном этапе развития эмпирической математики. Отсутствие теории во всех математиках древности, кроме греческой, показывает, что причины, приведшие к зарождению и развитию практической или вычислительной математики, не могут вызвать стремление к дедуктивному доказательству. Если греки начали с доказательства вещей, бесполезных для практической жизни и слишком простых для демонстрации технической виртуозности,[544]
значит импульсы, приведшие к этому, шли из иных сфер общественной жизни.2.2 Дедуктивное доказательство