Применение доказательства как ничто другое способствовало теоретизации греческой математики, т. е. формулированию теорем в общем виде и отказу от операций с числами. Для строгого и неопровержимого доказательства какого-либо положения (к чему всегда стремились греческие математики) одних практических расчетов или измерений недостаточно, ибо они не являются абсолютно точными, к тому же их можно опровергнуть новыми, еще неизвестными фактами. Стремление к доказательности вело, таким образом, к формулированию общих теорем, справедливых для любых численных соотношений. Одновременно оно направляло развитие греческой математики по геометрическому пути, освобождающему от необходимости операций с числами. Абстрактные отрезки, углы и фигуры были тем материалом, который как нельзя лучше подходил для построений дедуктивного типа.
С введением в математику доказательства связано появление еще одного ее важного качества — аксиоматичности. В основе дедуктивных построений, которым стремятся придать истинный и непротиворечивый характер, по необходимости должны лежать какие-то положения, принимаемые без доказательств. Развитие математической теории естественным образом побуждало греческих математиков к поискам ее аксиоматической основы.[545]
Таким образом, можно утверждать, что систематическое применение доказательства было важнейшим фактором формирования теоретической математики, построенной на аксиоматической основе. Но что же заставило греков сделать математику доказательной, если сама она никак не побуждала их к этому?В поисках истоков логического доказательства обычно называют две сферы общественной жизни, в которых оно могло зародиться: во-первых, философию, во-вторых, политическое и судебное красноречие. Так, например, Сабо полагает, что математика VI-начала V в. развивалась эмпирическим путем, а дедуктивное доказательство, в частности reductio ad absurdum, появилось в результате изысканий Парменида и Зенона.[546]
На первый взгляд, философия оказывается в более удачном положении, чем математика. Первыми дошедшими до нас образцами дедуктивного доказательства считаются фрагменты Парменида и Зенона. Парменид выдвигает свое основное положение — бытие есть, а небытия нет (28 В 2-4), из которого логическим путем выводит характеристики бытия: неизменность, единство, вневременность и пр., и опровергает альтернативные варианты: возникновение бытия, его качественное разнообразие и пр. Зенон, опровергая возможность движения и множественности, регулярно прибегает к reductio ad absurdum (29 А 25, В 1-2). Парменид, вероятно, был первым философом, подкреплявшим свои идеи логическими доказательствами, но едва ли он изобрел сам дедуктивный метод. Слишком многое говорит о том, что метод этот был воспринят им из математики, в которой он применялся еще со времени Фалеса.Сабо полагает, что Фалес «доказывал» свои теоремы эмпирическим путем, апеллируя к наглядности геометрических чертежей. Действительно Фалес использовал метод наложения (от которого, кстати, не мог полностью избавиться и Евклид)[547]
и опирался на факты, истинность которых в ряде случаев наглядна. Но в том-то и дело, что Фалес этой наглядностью не удовлетворился, и его доказательства вовсе не сводились к ее демонстрации. Одно из них, сохранившееся у Аристотеля (An. Prior. 41 b 13-22),[548] показывает нормальную процедуру логических рассуждений.ABC — равнобедренный треугольник с вершиной в центре круга. Требуется доказать, что углы при его основании равны. Ζ 1 = Ζ 2, поскольку оба они являются углами полуокружности; Ζ 3 = Ζ 4, поскольку два угла любого сегмента равны между собой. Отняв от равных углов 1 и 2 равные же углы 3 и 4, мы получим, что углы СВА и CAB равны между собой.
Заметим, что для наглядной демонстрации достаточно было перегнуть пополам папирусный чертеж, однако доказательство Фалеса пошло совсем другим путем.
О дедуктивном характере, по крайней мере, части математических выводов Фалеса свидетельствует и Евдем. В одном случае он говорит о доказательстве теоремы, в другом — что она была «найдена» Фалесом, в третьем — что тот не дал научного доказательства. У него же (fr. 133) мы читаем: «Одному Фалес учил более абстрактным образом (καθολικώτερον), другому — более чувственным, наглядным (αίσθητικώτερον)».