Читаем Наука, философия и религия в раннем пифагореизме полностью

Поскольку традиция связывает с Феодором доказательства иррациональности величин, лежащих между √3 и √17 открытие Гиппаса традиционно относят лишь к √2. Классическое доказательство иррациональности √2, т. е. несоизмеримости диагонали квадрата с его стороной, дается в приложении к X книге Евклида. Оно опирается на учение о четном и нечетном и ведется методом reductio ad absurdum.[615] Обе эти детали указывают на его пифагорейское происхождение, но данное доказательство слишком сложное, чтобы быть первоначальным.[616] Фон Фриц, например, считал, что Гиппас открыл иррациональность, исследуя свойства правильного пятиугольника, диагональ которого также несоизмерима с его стороной. Попытки найти для них общую меру ведут к построению все новых пятиугольников, что наглядно демонстрирует бесконечность самой процедуры.[617] Однако доевклидова традиция связывает открытие иррациональности со стороной квадрата, а не пятиугольника (Pl. Tht. 147d; Parm. 140b-c; Arist. Met. 1053 а 14 f). Поэтому более предпочтительными кажутся реконструкции, основанные на отношении диагонали и стороны квадрата.[618] Одна из них, предложенная Кнорром,[619] выглядит следующим образом.

Дан квадрат ABCD. Из чертежа видно, что квадрат DBHI является его удвоением. Если сторона DB и диагональ ВН соизмеримы, то можно сосчитать, какое количество раз каждая из них измеряется их общей мерой. При этом из чисел DB и DH по крайней мере одно не должно быть четным.

Квадраты DBHI и AGFE представляют собой квадратные числа. AGFE — это удвоенный DBHI, как ясно из чертежа. Следовательно, AGFE — это четное квадратное число, и его сторона AG, равная DH, должна быть четной. Значит, AGFI делится на 4. Поскольку ABCD — это 1/4 AGFE, он представляет собой четное число. Квадратное число DBHI должно быть его удвоением. Отсюда DBHI и его сторона DB — четные числа. Таким образом, вопреки предположению, мы приходим к тому, что числа DB и DB четные. Следовательно, эти две линии несоизмеримы.

Какую бы, впрочем, реконструкцию первоначального доказательства иррациональности √2 мы ни приняли, остается ясным, что это открытие имело кардинальную важность в становлении греческой математики. Проблемы, которые оно породило, дали импульс исследованиям Гиппократа, Феодора, Теэтета и нашли свое завершение в созданной Евдоксом теории пропорций, действительной как для соизмеримых, так и для несоизмеримых величин. Значение открытия иррациональности многие были даже склонны переоценивать, полагая, что оно привело к так называемому кризису оснований в греческой математике — по аналогии с тем, что произошло в математике на рубеже XIX-XX вв.[620] Однако эта точка зрения давно уже оставлена, ибо свидетельства такого кризиса отсутствуют.[621] Столь же мало подтверждения находит и идея о том, что открытие Гиппаса нанесло «смертельный удар» по пифагорейской догме «всё есть число». К этому вопросу мы еще вернемся при обсуждении пифагорейской философии.

Важность открытия иррациональности является одной из причин, по которой многие историки математики стремятся отнести его к как можно более позднему времени, к концу V в. или даже к началу IV в. Между тем все необходимые математические предпосылки этого открытия (теорема Пифагора, теория четных и нечетных чисел, метод reduciio ad absurdum) имелись уже на рубеже VI-V вв. Нас не должно смущать то обстоятельство, что между Гиппасом и Феодором, продолжившим его исследования, прошло два поколения. Такой же или даже еще больший временной разрыв мы наблюдаем и во многих других случаях. Первые три пропорции открыл Пифагор, следующие три были найдены Евдоксом (Eud. fr. 133), родившимся на 180 лет позже. Так же обстоит дело и с двумя способами нахождения пифагоровых троек: первый из них был найден Пифагором, второй — Архитом.

* * *

Представление о том, чего достигли пифагорейцы в математике к началу деятельности Гиппократа Хиосского (ок. 440), можно получить, сопоставляя свидетельства Евдема с тем, что вытекает из фрагментов самого Гиппократа. При этом следует помнить, что Евдем называет еще двух геометров, работавших в первой половине V в.: Анаксагора и Энопида Хиосского (fr. 133). К сожалению, о математике Анаксагора мы совсем ничего не знаем, с Энопидом же традиция связывает два сравнительно элементарных предложения (Eucl. 1,12, 23), которые, однако, весьма важны для астрономии.[622]

Из сообщений, прямо или опосредованно восходящих к Евдему, известно, что пифагорейцам принадлежали следующие геометрические открытия:

1) теорема о равенстве углов треугольника двум прямым (fr. 136), содержащаяся у Евклида (1,32);

2) теория приложения площадей, рассматриваемая в I и II книгах Евклида (fr. 137);

3) теорема о том, что плоскость вокруг точки могут заполнить только следующие правильные многоугольники: шесть треугольников, четыре квадрата и три шестиугольника (Procl. In Eucl., p. 304);

4) IV книга Евклида, рассматривающая отношения правильных многоугольников и круга (Schol. in Eucl. IV,2);

Перейти на страницу:

Похожие книги

Афоризмы житейской мудрости
Афоризмы житейской мудрости

Немецкий философ Артур Шопенгауэр – мизантроп, один из самых известных мыслителей иррационализма; денди, увлекался мистикой, идеями Востока, философией своего соотечественника и предшественника Иммануила Канта; восхищался древними стоиками и критиковал всех своих современников; называл существующий мир «наихудшим из возможных миров», за что получил прозвище «философа пессимизма».«Понятие житейской мудрости означает здесь искусство провести свою жизнь возможно приятнее и счастливее: это будет, следовательно, наставление в счастливом существовании. Возникает вопрос, соответствует ли человеческая жизнь понятию о таком существовании; моя философия, как известно, отвечает на этот вопрос отрицательно, следовательно, приводимые здесь рассуждения основаны до известной степени на компромиссе. Я могу припомнить только одно сочинение, написанное с подобной же целью, как предлагаемые афоризмы, а именно поучительную книгу Кардано «О пользе, какую можно извлечь из несчастий». Впрочем, мудрецы всех времен постоянно говорили одно и то же, а глупцы, всегда составлявшие большинство, постоянно одно и то же делали – как раз противоположное; так будет продолжаться и впредь…»(А. Шопенгауэр)

Артур Шопенгауэр

Философия
Что такое философия
Что такое философия

Совместная книга двух выдающихся французских мыслителей — философа Жиля Делеза (1925–1995) и психоаналитика Феликса Гваттари (1930–1992) — посвящена одной из самых сложных и вместе с тем традиционных для философского исследования тем: что такое философия? Модель философии, которую предлагают авторы, отдает предпочтение имманентности и пространству перед трансцендентностью и временем. Философия — творчество — концептов" — работает в "плане имманенции" и этим отличается, в частности, от "мудростии религии, апеллирующих к трансцендентным реальностям. Философское мышление — мышление пространственное, и потому основные его жесты — "детерриториализация" и "ретерриториализация".Для преподавателей философии, а также для студентов и аспирантов, специализирующихся в области общественных наук. Представляет интерес для специалистов — философов, социологов, филологов, искусствоведов и широкого круга интеллектуалов.Издание осуществлено при поддержке Министерства иностранных дел Франции и Французского культурного центра в Москве, а также Издательства ЦентральноЕвропейского университета (CEU Press) и Института "Открытое Общество"

Жиль Делез , Жиль Делёз , Пьер-Феликс Гваттари , Феликс Гваттари , Хосе Ортега-и-Гассет

Философия / Образование и наука
История философии: Учебник для вузов
История философии: Учебник для вузов

Фундаментальный учебник по всеобщей истории философии написан известными специалистами на основе последних достижений мировой историко-философской науки. Книга создана сотрудниками кафедры истории зарубежной философии при участии преподавателей двух других кафедр философского факультета МГУ им. М. В. Ломоносова. В ней представлена вся история восточной, западноевропейской и российской философии — от ее истоков до наших дней. Профессионализм авторов сочетается с доступностью изложения. Содержание учебника в полной мере соответствует реальным учебным программам философского факультета МГУ и других университетов России. Подача и рубрикация материала осуществлена с учетом богатого педагогического опыта авторов учебника.

А. А. Кротов , Артем Александрович Кротов , В. В. Васильев , Д. В. Бугай , Дмитрий Владимирович Бугай

История / Философия / Образование и наука