Взглянем теперь, каков был уровень математики вскоре после 480-440 гг., на которые падает деятельность Парменида и Зенона. Известно, что Демокриту принадлежала книга ???? ?????? ??????? ??? ?????? (D.L. ??,47), следовательно, несоизмеримые отрезки были уже открыты. Гиппократ Хиосский (ок. 440 г.) занимался проблемой удвоения куба, которой должна была предшествовать соответствующая проблема в планиметрии — удвоение квадрата, тесно связанная с открытием несоизмеримости. Из фрагмента Гиппократа о квадратуре луночек (Eud. fr. 140) можно заключить, что он знал немалую часть положений I—IV книг Евклида.[549]
Ясно также, что они были доказаны еще до него, ибо строгость доказательств самого Гиппократа была оправдана только в том случае, если положения, на которые он опирался, имели ту же логическую форму и завершенность, что и его собственные. Гиппократу же Евдем приписывает первые «Начала» (fr. 133), в которых известные в то время теоремы и проблемы были, по всей вероятности, сведены воедино и выстроены в логической последовательности. Все это демонстрирует такую зрелость тогдашней математики, которую нельзя объяснить, полагая, что дедуктивный метод проник в нее из философии только в конце первой половины V в.Согласно убедительной реконструкции ван дер Вардена, «Началам» Гиппократа предшествовал пифагорейский учебник математики, содержавший основу первых четырех книг Евклида.[550]
Таким образом, мы вплотную подходим к пифагорейской математике начала V в., откуда Парменид и Зенон могли почерпнуть идею дедуктивного доказательства — ведь согласно традиции, учителем Парменида был пифагореец Аминий (28 А 1). Все это позволяет нам с полным основанием присоединиться к выводу, сделанному еще Т. Гомперцем: «Система Парменида обязана своей формой математике Пифагора».[551]В истории науки можно найти множество примеров того, как одна научная отрасль заимствует методы, оказавшиеся успешными в других областях знания. Но никто не будет перенимать метод, если его применение не дало ощутимых результатов на материале той области, где он возник. Между тем дедуктивное доказательство в философии элеатов, да и вообще в философии, отнюдь не обладает такой логической убедительностью и неопровержимостью, как в математике.[552]
Ни Пармениду, ни Зенону не удалось, собственно, ничего доказать, они лишь пытались это сделать. Уже их младшие современники атомисты отвергают идею о том, что небытия (т. е. пустоты — ?????) нет: их космос состоит именно из пустоты и движущихся в ней атомов. Не имели успеха, да и не могли иметь, и попытки Зенона опровергнуть возможность движения и множественности, хотя поднятые им проблемы во многом стимулировали развитие философии. Влияние элеатов на последующих философов объясняется глубиной и смелостью их мысли, а не дедуктивными построениями. Разве не были восприняты некоторые идеи Гераклита, стиль рассуждений которого очень далек от доказательности? Словом, после сравнения весьма скромных успехов дедуктивного метода в философии с тем, что он дал математике, вопрос «у кого он был заимствован?» кажется риторическим.[553]Не более убедительна и гипотеза, связывающая зарождение дедуктивного доказательства с красноречием, политическим или судебным. Дело даже не в том, что начало риторики принято относить ко второй трети V в., а свое полное развитие она получила еще позже, — в конце концов, греки могли аргументированно излагать свои взгляды и во времена Фалеса. Но там, где речь идет о жизненных интересах, логические аргументы не могут иметь решающей силы — а именно с этой ситуацией мы сталкиваемся в народном собрании и в суде.[554]
В то время как греческая математика отталкивалась в своих доказательствах от вещей очевидных и всеми признаваемых истинными, для политической и судебной аргументации такой общей основы нет. Хорошо известно, что в Афинах один и тот же человек часто писал убедительные речи pro и contra, а обвиняемые в тяжких преступлениях приводили в суд жену и детей, больше надеясь смягчить судей их несчастным видом и плачем, чем своими аргументами. Трудно представить себе, чтобы в этой атмосфере могло зародиться стремление строго следовать фактам и ни в чем не грешить против логики.Итак, едва ли можно сомневаться в том, что математика не заимствовала дедуктивное доказательство у философии или риторики, — оно зародилось в ней самой. В то же время дедуктивный метод, в отличие от просто логических рассуждений, не является чем-то внутренне присущим обращению с числами и фигурами: на Древнем Востоке (включая Индию и Китай) математика развивалась без него. Следовательно, пытаясь ответить на вопрос, почему Фалес стал искать дедуктивное доказательство простых математических фактов, мы вынуждены будем обратиться к причинам, внешним по отношению к математике.