Если первая часть этого пассажа, уже цитированная нами выше, серьезных проблем не вызывает, то вторая, начинающаяся со слов «придав ей форму», носит явные следы неоплатонической терминологии (????? и ??????).[569]
Как показывает сравнение этого пассажа с параллельным местом из Ямвлиха, его начало у обоих авторов совпадает, далее же следуют их собственные добавления или переложения текста Евдема. Однако у Прокла, в отличие от Ямвлиха, сохранилось и упоминание о двух конкретных открытиях Пифагора. Содержалось ли оно в тексте Евдема? В сущности, у самого Прокла не было никаких особых оснований приписывать Пифагору чужие открытия, более того, он даже сомневался, принадлежит ли тому теорема, носящая его имя (In Eucl, p. 426).[570] Если Прокл связывал некие открытия с Пифагором, то сведения о них он должен был почерпнуть из предшествующей традиции. Поскольку Евдем, как мы знаем, упоминал в своем труде и о пропорциях, и об иррациональных величинах, и о правильных многогранниках, то вполне резонно предположить, что к нему восходит по крайней мере часть этой информации.Хотя чтение «теория пропорций» (??? ??? ????? ??????????) является широко принятым, оно опирается лишь на одну из рукописей комментария Прокла,[571]
в других же стоит «теория иррациональных величин» (??? ?????? ??????????). Тем не менее, если даже у самого Прокла стояла ??? ?????? ??????????, чтение ??? ??? ????? ?????????? могло восходить к тексту Евдема, а затем, уже в виде исправления, появиться в одной из рукописей Прокла. В пользу этого говорят не столько филологические, сколько историко-математические соображения. Применительно ко времени Пифагора вообще нельзя говорить о «теории» иррациональных величин, но лишь об открытии иррациональности ?2, и Евдем едва ли мог этого не знать. Теория пропорций тесно связана с акустическими исследованиями Пифагора и с его математическими открытиями: по-видимому, опираясь на нее, он доказал свою знаменитую теорему. Кроме того, о знакомстве Пифагора с теорией пропорций говорят и другие авторы.[572] Если бы Пифагор открыл иррациональность ?2, то связь столь известного открытия с не менее знаменитым именем безусловно нашла бы какое-то отражение в греческой литературе. Однако до Прокла никто об этом не писал, все сведения так или иначе связаны с именем Гиппаса.[573] Словом, если у Евдема что-то упоминалось, то скорее теория пропорций; вместе с тем мы в состоянии установить ее принадлежность Пифагору и не опираясь на Евдема.Непросто обстоит дело и с конструкцией космических тел, т. е. пяти правильных многогранников. Евдем едва ли стал бы приписывать Пифагору конструкцию всех пяти тел: в схолиях к Евклиду (XIII, 1) говорится, что первые три тела (пирамиду, куб и додекаэдр) открыли пифагорейцы, а октаэдр и икосаэдр — Теэтет. Эта информация, как сейчас общепризнанно, восходит к Евдему. Построение же додекаэдра связывается в традиции с Гиппасом (18 А 4), кроме того, оно предполагает открытие иррациональности, которое едва ли было сделано Пифагором. Из всего этого с определенной степенью вероятности можно заключить, что к Пифагору относится лишь построение двух первых многогранников: куба и пирамиды.[574]
Версия о том, что Пифагор — автор конструкции всех пяти тел, встречается еще до Прокла, в доксографической традиции (Aet., 11,6.5 = 44 А 15), и восходит, по-видимому, к Посидонию, т. е. к платонической интерпретации пифагореизма, а не к Феофрасту, как полагал Дильс (DK I, 403.8).[575]
Но кто именно внес в каталог эту фразу, Прокл или предшествовавший ему компилятор, сказать трудно. Так или иначе, ясно, что только поздние авторы связывают с Пифагором чужие открытия, а не ранние пифагорейцы — свои.7. Согласно эпиграмме Аполлодора-логистика, Пифагору принадлежит доказательство теоремы, носящей его имя. Единодушие, с которым все античные свидетельства называют Пифагора автором этой теоремы, отсутствие иных претендентов, а также ее тесная связь с другими его открытиями, в частности с теорией пропорций, говорят в пользу достоверности слов Аполлодора.
8. Наконец, последнее заслуживающее внимания свидетельство: Герон Александрийский (Geom. 8, р. 218), а вслед за ним и Прокл (In Euch., p. 428) приписывают Пифагору метод определения длины сторон прямоугольного треугольника (пифагоровы тройки). Известно, что оба они пользовались сочинением Евдема, к нему, вероятно, и восходит эта информация.[576]
Иной источник здесь трудно предположить.