Одним из важных звеньев между арифметикой, геометрией и гармоникой была теория пропорций.[577]
Пифагору, безусловно, были известны три средние пропорциональные: арифметическое c=(a+b)/2, геометрическое c=?ab и гармоническое c=2ab/(a+b) также «музыкальная» пропорция a : (a+b)/2 = 2ab/(a+b) : b, прямо связанная с его акустическими исследованиями.[578] По сообщению Гауденция (Intr. harm. 11), восходящему к более ранним источникам,83 Пифагор открыл численное выражение гармонических интервалов путем деления струны монохорда в отношении 12:6, 12:8, 12:9. Данные отношения присутствуют и в «музыкальной» пропорции, где средние члены являются арифметическим и гармоническим средним между крайними (6:9 = 8:12). Эту же пропорцию использовал и Гиппас в своем опыте с медными дисками (Aristox. fr. 90).[579]Интересное подтверждение принадлежности Пифагору теории пропорций нашел Г. Френкель.[580]
Он показал, что некоторые идеи Гераклита выражены в форме геометрической пропорции, например: бог/человек = человек/ребенок (22 В 79), бог/человек = человек/обезьяна (22 В 82-83). Френкель резонно предположил, что Гераклит не сам нашел геометрическую пропорцию, а воспринял ее у ранних пифагорейцев.Арифметическую теорию пропорций, приложимую к соизмеримым величинам, Пифагор, скорее всего, использовал и при доказательстве своей знаменитой теоремы.[581]
Ход ее, согласно реконструкции Хита, таков. Исходя из того, что в подобных треугольниках ABC, ABD и A CD стороны пропорциональны, мы получаем следующие равенства:Складывая их, мы получаем: АВ2
+АС2 = BC(BD + DC), или АВ2+ AC2 = DC2.Следующий раздел пифагоровой арифметики — это учение о четном и нечетном, ставшее первым образцом теории чисел. Как считал Беккер, а вслед за ним большинство историков греческой математики,87 оно сохранилось у Евклида почти в неизменном виде (IX,21-34). Приведем для примера первые пять положений этого учения (в сокращенной форме):
21. Сумма четных чисел будет четной;
22. Сумма четного количества нечетных чисел будет четной;
23. Сумма нечетного количества нечетных чисел будет нечетной;
24. Четное число минус четное число есть четное;
25. Четное число минус нечетное число есть нечетное. Доказательства этих предложений опираются на определения
VII книги и строго логически следуют друг за другом. Хотя Евклид иногда представлял числа в виде отрезков (впрочем, это было скорее исключением, чем правилом), а пифагорейцы пользовались счетными камешками (?????), суть дела от этого не меняется. Беккер, а еще более подробно Кнорр демонстрируют, что сохраненные Евклидом доказательства (а не только сами предложения) легко иллюстрируются при помощи псефов.[582]
Абсолютно неправдоподобно, чтобы Пифагор выдвигал данные предложения без доказательств, которые были добавлены кем-то позднее: сами предложения в большинстве своем очевидны любому, кто знаком с элементарными вычислениями. Аристоксен или Аристотель, говоря о пифагоровой арифметике, едва ли ставили бы ему в заслугу «открытие» или «иллюстрацию» того факта, что сумма четных чисел всегда будет четной, если бы это и сходные с ним предложения не были доказаны. Точно так же, как Фалес в геометрии, Пифагор начал в арифметике с доказательства простейших фактов, которые раньше не считали нужным доказывать. Насколько быстро он продвинулся в разработке дедуктивного метода, показывает следующий факт: четыре предложения этого учения (IX,30-31, 33-34) доказываются от противного. Первым на это обратил внимание Сабо, но он отказался признать, что эти доказательства столь же древние, как и предложения.[583]
Единственный, в сущности, аргумент, который он приводит, — отсутствие исторических свидетельств — критики не выдерживает. Источников по раннегреческой математике так мало, что ожидать свидетельств для каждого доказательства было бы совершенно утопичным.Обратившись к математической стороне проблемы, следует признать справедливость выводов Беккера, полагавшего, что все учение о четном и нечетном следует рассматривать еп bloc. (Отмеченные им незначительные изменения не касались предложений 30-31, 33-34.) Предложения, доказываемые от противного, совершенно естественно следуют из доказываемых прямым образом, не отличаясь от них по сложности. Так, например, для доказательства предложений 33-34 не требуется ничего, кроме определений 8-9 седьмой книги. Было бы крайне странно полагать, что первоначальное прямое доказательство было впоследствии заменено косвенным: греческая математика систематически избегала подобных операций. Словом, все говорит за то, что это учение дошло до нас в первоначальном виде.
Отсюда следуют два важных вывода: 1) наглядность математических фактов и их дедуктивное доказательство вовсе не находятся в непримиримом противоречии, как это стремился представить Сабо; 2) доказательство от противного родилось внутри математики, причем на самом раннем ее этапе,[584]
и лишь затем элеаты попытались применить его в философии.