Читаем Наука логики. Том 2 полностью

Если более детально сравнить между собой теоремы какой-нибудь синтетической науки и в особенности геометрии, то мы обнаружим следующее различие: одни из теорем этой науки заключают в себе лишь отдельные отношения предмета, другие же – такие отношения, в которых выражена полная определенность предмета. Очень поверхностен тот взгляд, который рассматривает все предложения как равноценные на том основании, что вообще каждое из них содержит, дескать, в себе некоторую истину и что они в формальном ходе изложения, в связи доказательства одинаково существенны. Различие касательно содержания теорем находится в теснейшей связи с самим этим ходом изложения; некоторые дальнейшие замечания об этом ходе изложения послужат к тому, чтобы ближе осветить как указанное различие, так и природу синтетического познания. Прежде всего необходимо отметить следующее: в Эвклидовской геометрии, которая должна служить здесь примером как представительница синтетического метода, наиболее совершенный образец которого она доставляет, искони являлся предметом прославления порядок расположения теорем, благодаря которому по отношению к каждой теореме те предложения, которые требуются для ее построения и доказательства, всегда уже имеются под рукой как уже доказанные раньше. Это обстоятельство касается формальной последовательности; как ни важна эта последовательность, она все же больше касается внешней целесообразности расположения материала и сама по себе не имеет никакого отношения к существенному различию понятия и идеи, в котором заключается более высокий принцип необходимости поступательного движения, а именно, дефиниции, с которых начинают в геометрии, берут чувственный предмет как непосредственно данный и определяют его по его ближайшему роду и специфическому (видовому) отличию, которые тоже суть простые, непосредственные определенности понятия – всеобщность и особенность, – отношение между которыми не развертывается дальше. Начальные теоремы сами не могут касаться ничего другого, кроме таких непосредственных определений, как те, которые содержатся в дефинициях; а равно и их взаимная зависимость может ближайшим образом иметь только тот общий характер, что одно определение вообще определено другим. Так, первые теоремы Евклида о треугольниках касаются лишь совпадения, т. е. вопроса о том, сколько составных частей должны быть определены в треугольнике, чтобы были вообще определены также и остальные составные части того же самого треугольника или, иначе говоря, весь треугольник в целом. Что тут сравниваются друг с другом два треугольника и совпадение полагают в покрытии одного треугольника другим, это окольный путь, в котором нуждается метод, по необходимости долженствующий пользоваться чувственным покрыванием вместо мысли об определимости как таковой. Помимо этого, рассматриваемые сами по себе эти теоремы сами содержат в себе две части, из которых на одну можно смотреть как на понятие, а на другую как на реальность, как на то, что завершает понятие, доводя его до реальности; а именно, то, что вполне определяет треугольник (например, две стороны и заключенный между ними угол), есть для рассудка уже весь треугольник; для полной определенности последнего ничего больше не требуется; остальные два угла и третья сторона есть избыток реальности над определенностью понятия. Поэтому вот что, собственно говоря, делают эти теоремы: они сводят чувственный треугольник, во всяком случае нуждающийся в трех сторонах и трех углах, к его простейшим условиям; дефиниция лишь вообще упомянула о трех линиях, замыкающих плоскую фигуру и делающих ее треугольником; теорема же впервые точно и ясно указывает определяемость углов через определенность сторон, равно как другие теоремы указывают зависимость других трех составных частей треугольника от трех остальных частей. Указание же на полную определенность величины треугольника по его сторонам внутри его самого содержит в себе пифагорова теорема; только она впервые является уравнением сторон треугольника, тогда как предшествующие теоремы[110] доходят лишь вообще до установления определенности его частей по отношению друг к другу, а не до уравнения. Эта теорема есть поэтому совершенная, реальная дефиниция треугольника, а именно, прежде всего прямоугольного треугольника, наиболее простого в своих различиях и потому наиболее правильного. Этой теоремой Евклид заканчивает первую книгу, так как она (теорема) и в самом деле представляет собой достигнутую совершенную определенность. Подобным же образом Евклид, после того как он предварительно свел к единообразному началу[111] обремененные большим неравенством непрямоугольные треугольники, заканчивает свою вторую книгу сведением прямоугольника к квадрату – уравнением между равным самому себе (квадратом) и[112] неравным внутри себя (прямоугольником); точно так же и гипотенуза, соответствующая прямому углу, т. е. чему-то равному самому себе, составляет в пифагоровой теореме одну сторону уравнения, а другую сторону образует неравное себе, а именно два катета. Указанное уравнение между квадратом и прямоугольником лежит в основании второй дефиниции круга, которая опять-таки есть пифагорова теорема, поскольку катеты принимаются за переменные величины; первое уравнение круга находится в таком же самом отношении чувственной определенности к уравнению, в каком вообще находятся друг к другу две различных дефиниции конических сечений.

Перейти на страницу:

Все книги серии Философия в кармане

Похожие книги

The Beatles от A до Z: необычное путешествие в наследие «ливерпульской четверки»
The Beatles от A до Z: необычное путешествие в наследие «ливерпульской четверки»

Британский писатель, продюсер и музыкант Питер Эшер рассказывает историю «Битлз» через песни: их собственные, их коллег, предшественников и последователей. Для этого он использует классическую алфавитную систему, однако применяет ее неожиданным образом. К примеру, вы не встретите известнейших «Yesterday» на букву Y или «All you need is love» на букву A, вместо этого Эшер рушит устоявшиеся ассоциации и заменяет их другими, показывая даже привычные треки с новой стороны. При этом автор так искусно препарирует музыкальные композиции, указывая нам на важные и «вкусные» детали, что вам гарантированно захочется все это переслушать – так не отказывайте себе в удовольствии.И не забывайте, что Эшер лично знал легендарную «четверку», ведь Пол Маккартни даже когда-то жил в его доме! Поэтому здесь нашлось место и для уникальных историй и воспоминаний, которые вряд ли можно прочесть где-либо еще.Эта книга – повод влюбиться в музыку «Битлз» снова.

Питер Эшер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Зачем нужна геология: краткая история прошлого и будущего нашей планеты
Зачем нужна геология: краткая история прошлого и будущего нашей планеты

Каков риск столкновения астероида с Землей? Почему температура океана миллионы лет назад имеет значение сегодня? В увлекательном и доступном изложении Дуг Макдугалл дает обзор удивительной истории Земли, основанный на информации, извлеченной из природных архивов. Мы обнаруживаем, что наука о земле фактически освещает многие из наиболее насущных проблем сегодняшнего дня — доступность энергии, доступ к пресной воде, сельское хозяйство. Но более того, Макдугалл ясно дает понять, что наука также дает важные ключи к будущему планеты.Дуг Макдугалл — писатель, ученый-геолог и педагог. Почетный профессор в Институте океанографии Калифорнийского университета, где в течение многих лет преподавал и проводил исследования в области геохимии. Заядлый путешественник, его исследования провели его по всему миру, от Сибири и канадской Арктики до южной Индии, Китая и дна Тихого океана.

Дуг МакДугалл

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Думай «почему?». Причина и следствие как ключ к мышлению
Думай «почему?». Причина и следствие как ключ к мышлению

Удостоенный премии Алана Тьюринга 2011 года по информатике, ученый и статистик показывает, как понимание причинно-следственных связей произвело революцию в науке и совершило прорыв в работе над искусственным интеллектом.«Корреляция не является причинно-следственной связью» — эта мантра, скандируемая учеными более века, привела к условному запрету на разговоры о причинно-следственных связях. Сегодня это табу отменено. Причинная революция, открытая Джудией Перлом и его коллегами, пережила столетие путаницы и поставила каузальность — изучение причин и следствий — на твердую научную основу.Работа Перла позволяет нам не только узнать, является ли одно причиной другого, она позволяет исследовать реальность, которая уже существует, и реальности, которые могли бы существовать. Она демонстрирует суть человеческой мысли и дает ключ к искусственному интеллекту.В формате PDF A4 сохранен издательский макет книги.

Дана Маккензи , Джудиа Перл

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука