Читаем (Не)совершенная случайность. Как случай управляет нашей жизнью полностью

Революция была своего рода бунтом против того образа мысли, который господствовал в Европе, расстававшейся со Средними веками: в те времена представления о мире не подвергались глубокому исследованию и систематизации. В одном городе торговцы украли одежду у повешенного — они верили, что эго повысит их продажи пива. Прихожане другого города верили, что можно излечиться от заболевания, если нагишом обойти вокруг церковного алтаря, распевая всякие богохульства{66}. Один коммерсант старался не справлять нужду в «не том» туалете, считая, что туалет этот приносит неудачу. Вообще-то, коммерсант был биржевым трейдером, он поделился своей тайной с журналистом из Си-эн-эн в 2003 г.{67} Да, некоторые до сих пор верят в приметы, однако на сегодняшний день для любознательных существуют хотя бы научные объяснения, доказывающие или отрицающие эффективность соблюдения этих примет. Если современник Кардано выигрывал в кости, причем без применения математического анализа, он произносил благодарственную молитву, ну или считал, что ему помогли «счастливые» носки, и впредь не стирал их. Сам Кардано считал, что полосы неудачи случаются по причине «потери благосклонности судьбы» и что один из способов вернуть удачу — удачно сыграть в кости. Если в руке зажата счастливая «семерка», к чему вся эта возня с математикой?

Большинство считает, что началась научная революция в 1583 г, всего через семь лет после смерти Кардано. Легенда гласит, что именно в этом году в Пизанском университете на лекции сидел один студент, который вместо того, чтобы внимать словам службы, смотрел на нечто гораздо более занимательное: на подвесную вращавшуюся лампу. Используя свой пульс в качестве таймера, студент, Галилео Галилей, заметил: время, за которое лампа проходит большую дугу, равно времени, за которое она проходит малую дугу. Из этого наблюдения родился закон: период колебаний маятника не зависит от его амплитуды. Наблюдения Галилео отличались точностью и практичностью, они были простыми, но знаменовали собой новый подход к описанию физических явлений: наука, исследуя законы природы, стала основываться на опыте и эксперименте, а не на интуитивных догадках и отдельных умозаключениях. Однако самое главное в том, что эти опыты и эксперименты стали проводиться с помощью математических вычислений.

Исходя из своих научных знаний, Галилео написал небольшую работу об азартных играх: «Размышления на тему игры в кости». Работа была напечатана по заказу покровителя Галилео, герцога Тосканского. Герцога интересовал вопрос: почему при броске трех костей чаще выпадает 10, чем 9? Вероятность такой ситуации равна всего лишь примерно 8%, ни 10, ни 9 не выпадает слишком часто. Видимо, герцог много играл, раз подметил такую небольшую разницу, и вполне возможно, что на самом деле он нуждался не в уме Галилео, а в пошаговой программе избавления от зависимости. Неизвестно, почему, но Галилео тема не вдохновила. Однако как любой советник, который хочет сохранить за собой место, он оставил свое недовольство при себе и выполнил заказ.

Если бросить один кубик, шансы того, что выпадет любая конкретная цифра, равны 1 из 6. Однако если бросить два кубика, шансы в сумме уже не равны. Например, для суммы кубиков, равной 2, существует 1 шанс из 36, однако шанс увеличивается в два раза, если сумма равна 3. Причина в том, что сумму 2 можно получить только одним способом: подбросив два кубика, которые выпадут единицами, но сумму 3 можно получить уже двумя способами: подбросив два кубика, которые выпадут единицами; подбросив кубики так, чтобы выпали 1 и 2 (или 2 и 1). Таким образом, мы продвигаемся еще дальше в понимании случайных процессов, которые и составляют тему данной главы: развитие систематических методов анализа числа способов тех или иных исходов.


Ошибку герцога можно обнаружить, если подойти к проблеме с позиций талмудиста: чем пытаться объяснить, почему 10 выпадает чаще, чем 9, лучше задаться вопросом: а почему 10 должна выпадать чаще, чем 9? Появляется соблазн — поверить, что два кубика должны выпадать в сумме 10 и 9 с одинаковой частотой: и 10, и 9 можно представить 6 способами, в зависимости от того, как упадут три кубика. Для 9 можно записать такие способы следующим образом: (621), (531), (522), (441), (432) и (333). Для 10 это (631), (622), (541), (532), (442) и (433). Применяя закон Кардано о пространстве элементарных событий, получаем: вероятность благоприятного исхода равна соотношению исходов, которые благоприятны. Сумма 9 и 10 может быть составлена теми же 6 способами. Тогда почему одно вероятнее другого?

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже