Читаем (Не)совершенная случайность. Как случай управляет нашей жизнью полностью

А потому, что, как я уже говорил, закон пространства элементарных событий в его первоначальной форме применим только к тем исходам, которые обладают равной вероятностью. Вышеприведенные же комбинации таковыми не являются. К примеру, исход (631), то есть бросок, в результате которого выпадают 6, 3 и 1, обладает шестикратной вероятностью по сравнению с исходом (333), поскольку хотя и существует один способ, в результате которого выпадают три 3, способов, в результате которых получаются 6, 3 и 1, целых шесть: можно получить 6, затем 3 и 1, или же сначала 1, затем 3, а потом уже 6, ну и так далее. Представим запись исхода, где порядок бросков записывается трехзначными, разделенными запятой комбинациями. Тогда все то, что мы только что сказали, можно выразить короче: исход (631) состоит из возможностей (1,3,6), (1,6,3), (3,1,6), (3,6,1), (6,1,3) и (6,3,1), а исход (333) состоит только лишь из (3,3,3). Как только мы упростили запись таким вот образом, стало понятно: исходы одинаково вероятны, и можно применить закон. Поскольку существует 27 способов получить общую сумму в 10, бросая три кости, но лишь 25 способов получить сумму в 9, Галилей заключил: при броске трех костей вероятность выпадения 10 равна 27/25, то есть около 1,08 раза больше.

Решая поставленный перед ним вопрос, Галилей косвенным образом применил следующий важный принцип: «Вероятность события зависит от числа его исходов». Ничего удивительного в самом утверждении нет. Удивительно том, насколько обширен эффект, и насколько трудно его подсчитать. Предположим, вы даете 25 шестиклассникам список из 10 вопросов, на которые надо ответить быстро, не задумываясь. Подсчитаем возможные результаты одного конкретного ученика: он отвечает на все вопросы правильно; отвечает на 1 вопрос неправильно — тут возможны 10 вариантов, потому как вопросов 10; отвечает на 2 вопроса неправильно — возможны 45 вариантов, потому как вопросы группируются в 45 пар, и так далее. В результате в среднем в группе студентов, пытающихся угадать правильные варианты ответов, на каждого студента, который угадает 100% правильных ответов, приходится около 10 студентов, которые дадут 90% правильных ответов, и 45 студентов, которые дадут 80% правильных ответов. Шансы получить около 50 баллов, конечно, все же выше, но в классе из 25 учеников вероятность того, что хотя бы один ученик получит 80 баллов или выше, если все ученики отвечают наугад, равна 75%. Так что если вы преподаватель со стажем, то наверняка в вашей многолетней практике среди всех учеников, которые являлись на урок неподготовленными и более-менее угадывали ответы на контрольной работе, были и такие, которые умудрялись в итоге получить четверки или даже пятерки.

Несколько лет назад в Канаде проводилась государственная лотерея, и когда устроители решили вернуть накопившиеся призовые деньги, за которыми никто так и не пришел, они на собственном горьком опыте убедились в том, как важен тщательный подсчет{68}. Они приобрели 500 машин в качестве бонусов и запрограммировали компьютер таким образом, чтобы из 2,4 млн подписчиков на лотерейные билеты машина произвольно выбрала 500 счастливчиков. Затем список был опубликован. К смущению устроителей лотереи, один господин заявил (надо заметить, справедливо), что выиграл две машины. Устроителям было чему изумиться: из 2,4 млн номеров компьютер вслепую выбрал один и тот же номер дважды. Как могло такое случиться? Может, ошибка в программе?

Задача с подсчетом номеров билетов, с которой столкнулись устроители лотереи, ничем не отличается от задачи с днями рождения: сколько в группе должно быть людей, чтобы встретились два человека с одинаковым днем рождения (при этом предполагается, что одинаково возможны любые дни)? Большинство скажут, что ответ — количество дней в году, поделенное пополам, то есть что-то около 183. Но ответ этот можно счесть правильным для совсем другого вопроса: сколько людей с разными днями рождения должны присутствовать в группе, чтобы день рождения одного из них совпал с вашим? Если не заложено никаких ограничений относительно того, у каких именно двух человек дни рождения должны совпасть, то факт того, что существует множество возможных пар людей, дни рождения которых могли бы совпасть, коренным образом меняет дело. И число таких людей на удивление мало: всего 23. Если вернуться к канадской лотерее, где выборка производилась из 2,4 млн билетов, окажется, что необходимо гораздо больше, чем 500 номеров, чтобы номер повторился. И тем не менее исключать такую возможность не стоит. Шансы совпадения фактически равны примерно 5%. Цифра небольшая, однако стоило ее принять во внимание и запрограммировать компьютер таким образом, чтобы он тут же вычеркивал из списка каждый выбранный номер. Да, а того счастливчика, который оказался обладателем двух машин, от одной попросили отказаться. Только он не согласился.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже