Основываясь на предположении, зададимся вопросом: в каком случае можно было бы поставить на «Янки», то есть, каковы были шансы «Янки» на лидирующее положение? Чтобы вычислить это, мы подсчитываем все возможности для «Янки» выиграть и сравниваем их с количеством возможностей проиграть. 2 игры из серии уже были сыграны, оставалось сыграть еще 5 игр. Каждая игра содержала в себе 2 возможных исхода: «Янки» выигрывают (Y) или «Смельчаки» выигрывают (В). Получается 2 в 5-й степени, то есть 32 возможных исхода. К примеру, «Янки» могли бы выиграть 3 игры, а следующие 2 проиграть: YYYBB; либо они могли выигрывать и проигрывать через раз: YBYBY. (В последнем случае, поскольку «Смельчаки» выиграли бы 4 игры с 6 игрой, последняя игра вообще не состоялась бы, однако к этому моменту мы еще вернемся). Вероятность того, что «Янки» еще смогут выиграть в Мировой серии, была равна числу исходов с хотя бы 4 выигранными играми, разделенному на общее число исходов — 32; вероятность того, что «Смельчаки» выиграли бы, была равна числу исходов с хотя бы еще 2 выигранными играми, также разделенному на 32.
Такой подсчет выглядит странным, поскольку, как я уже заметил, включает варианты (как, например, YBYBY), при которых команды продолжают играть даже после того, как «Смельчаки» выигрывают необходимые им для победы 4 игры. Раз «Смельчаки» выигрывают 4 игры, 7-ю игру команды, конечно же не играют. Однако математика не зависит от человеческих причуд, и неважно, играют команды или не играют, это никак не отражается на факте существования таких исходов. К примеру, предположим, вы играете в игру и подбрасываете монету; по условиям игры вы побеждаете, как только монета падает орлом вверх. Существует 2 во 2-й степени, то есть 4 возможных варианта исходов с двумя бросками: орел-решка, орел-орел, решка-орел и решка-решка. При первом результате вам даже не придется бросать монету во второй раз, потому как вы уже выиграли. И тем не менее ваши шансы на выигрыш равны 3 из 4, потому что в 3 из 4 вариантов содержится исход «орел».
Таким образом, чтобы подсчитать шансы «Янки» и «Смельчаков» на победу, мы просто-напросто учитываем возможную последовательность из 5 игр, которые еще предстоит сыграть. Во-первых, «Янки» стали бы победителями в том случае, если бы выиграли 4 из 5 возможных оставшихся игр. Это могло произойти в 1 из 5 случаев: BYYYY, YBYYY, YYBYY, YYYBY или YYYYB. И наоборот, «Янки» победили бы, если бы выиграли все 5 оставшихся игр, что могло произойти только в следующем случае: YYYYY. Теперь «Смельчаки»: они стали бы чемпионами, если бы «Янки» выиграли только 3 игры, что могло произойти в 10 случаях (BBYYY, BYBYY и так далее), либо при условии, что «Янки» выиграли бы только 2 игры (что опять же могло произойти в 10 случаях), либо при условии, что «Янки» выиграли бы только 1 игру (что могло произойти в 5 случаях), либо если они не выиграли бы ни одной игры (такое могло произойти только в 1 случае). Суммируя эти возможные исходы, получаем следующее: шансы «Янки» на победу были равны 6 из 32, или около 19%, а «Смельчаков» — 26 из 32, или около 81%. Если состязание в рамках Мировой серии вдруг остановили бы, то, согласно Паскалю и Ферма, именно таким образом следовало бы распределить призовое вознаграждение, и именно такими были бы шансы на победу при условии заключения пари после первых 2 игр. Кстати, «Янки» все же вернули себе преимущество — выиграли следующие 4 игры, — и стали чемпионами.