Читаем (Не)совершенная случайность. Как случай управляет нашей жизнью полностью

Треугольник Паскаля

Треугольник Паскаля пригождается всякий раз, когда нужно выяснить количество способов, посредством которых находится некоторое число предметов из общего числа, равного выбираемому числу или превосходящее его. Вот как использовать треугольник при решении задачи о свадебном банкете. Чтобы найти число размещений гостей по 10 человек при их общем количестве в 100, начнем с того, что спустимся по треугольнику до ряда, обозначенного как 100. У треугольника, приведенного мной, такого ряда нет, он заканчивается рядом 10, однако предположим, что наш треугольник продолжен до ряда 100. Первое число в ряду 100 указывает на количество способов, которыми вы можете выбрать 0 гостей из группы в 100 человек. Способ тут, разумеется, один — вы просто-напросто никого не выбираете. Это верно для какого угодно количества гостей в группе, вот почему первое число в каждом ряду — 1. Второе число в ряду 100 обозначает количество способов, которыми можно выбрать 1 гостя из 100. Способов этих 100: можно выбрать гостя номер 1, либо гостя номер 2, ну и так далее. Подобный ход рассуждений применим к каждому ряду, таким образом, второе число в каждом ряду является просто-напросто числом этого самого ряда. Третье число в каждом ряду обозначает число разных вариантов распределения групп из 2 человек. И так далее. Искомое число — варианты распределения групп по 10 человек — таким образом одиннадцатое по счету в ряду. Даже если бы я продлил треугольник до 100 ряда, число оказалось бы слишком большим, чтобы поместиться на странице. И вообще, когда кто-либо из гостей на свадьбе жалуется, что его не туда посадили, можете объяснить, что вычисление всех возможных вариантов посадки заняло бы у вас слишком много времени: исходя из секунды на каждый вариант, пришлось бы потратить около 10 000 млрд лет. Недовольный гость, конечно же, решит, что вы попросту драматизируете.

Чтобы в самом деле воспользоваться треугольником Паскаля, сократим список гостей до 10 человек. Тогда нужный нам ряд как раз будет нижним, надписанный числом 10. Числа в этом ряду обозначают отдельные столики на 0, 1, 2 и так далее из группы в 10 человек. Эти числа вам уже знакомы из задачи про шестиклассников, которым дали контрольную работу — число вариантов неверных ответов ученика на все десять вопросов работы равно числу способов, посредством которых выбираются гости из группы в 10 человек. Такова одна из сильных сторон треугольника Паскаля: одни и те же математические вычисления применимы к разным ситуациям. В случае задачи, где «Янки» и «Смельчаки» боролись за победу в Мировой серии, мы производили утомительные подсчеты всех возможных ситуаций для 5 оставшихся игр. Теперь же узнать число способов, какими «Янки» могут выиграть 0, 1, 2, 3, 4 или 5 игр, можно прямо из ряда 5 треугольника:

Мы с первого взгляда видим, что шанс «Янки» выиграть 2 игры (10 способов) в два раза больше, чем шанс выиграть 1 игру (5 способов).

Стоит вам только познакомиться с данным методом вычислений, как вы заметите: треугольник Паскаля применим во многих случаях. Одно время моя знакомая работала в недавно созданной компании, занимавшейся компьютерными играми. Она рассказывала: начальник маркетингового отдела хотя и соглашался насчет того, что небольшие фокус-группы подходят «только для заключений относительно качества», тем не менее часто говорил о «поразительном» единодушии (4 против 2 или 5 против 1) между членами фокус-группы так, будто оно имело значение. Однако предположим, что в вашей фокус-группе 6 человек высказывают свое мнение о новинке, которую вы разрабатываете. Предположим, что в действительности новинка приходится по душе половине населения. Насколько точно данное предпочтение будет отражено в вашей фокус-группе? Теперь нужный нам ряд треугольника — ряд 6, представляющий число возможных подгрупп как 0, 1, 2, 3, 4, 5 или 6, членам которых ваша новинка может понравиться или не понравиться:

Мы видим, что мнения членов фокус-группы могут разделиться поровну, точно отражая мнение населения, в общем, 20 разными способами. Однако существуют также и 1+6+15+15+6+1=44 способа, которыми можно вычислить нерепрезентативное единодушие: либо «за», либо «против». Поэтому если вы не будете внимательны, шансы сбиться с пути равны 44 из 64, то есть двум третям. Этот пример вовсе не означает: если между членами группы достигнуто согласие, оно случайно. Но и значительным его считать тоже не стоит.

Анализ, произведенный Паскалем и Ферма, оказался первым серьезным шагом на пути к связной математической теории случайности. Последнее письмо из их знаменитой переписки датируется 27 октября 1654 г. Через несколько недель Паскаль испытал нечто, погрузившись на два часа в транс. Одни считают, что это был мистический опыт. Другие — что Паскаль в конце концов оторвался от планеты под названием Разум. Однако, как бы кто ни объяснял происшедшее, Паскаль после пережитого стал другим человеком. Это его преображение способствовало еще одному значительному вкладу в развитие идеи случайности.


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже