Читаем (Не)совершенная случайность. Как случай управляет нашей жизнью полностью

Зачастую в истории исследования случайности подтолкнувшее эти исследования событие само оказывалось случайным. Так вышло и с работой Паскаля: бросив исследования, он занялся изучением шанса. Началось все с того, что один из приятелей Блеза по развлечениям представил его одному снобу сорока пяти лет по имени Антуан Гомбо. Гомбо, этот аристократ с титулом шевалье де Мере, считал себя знатоком по части флирта и, судя по списку своих любовных похождений, таковым и был. Однако де Мере также имел репутацию опытного игрока, предпочитал высокие ставки и так часто выигрывал, что его даже подозревали в мошенничестве. И вот когда этот де Мере столкнулся с неким затруднением, он обратился за помощью к Паскалю. С этого началось исследование, которое положило конец «заклятию» Паскаля, отвратившему его от занятий наукой, обеспечило де Мере место в истории идей и разрешило проблему, которая так и оставалась нерешенной в работе Галилея, заказанной герцогом.

Шел 1654 год. Затруднение, с которым де Мере обратился к Паскалю, заключалось в очках. Предположим, вы с партнером играете, у вас равные шансы, и тот, кто первым наберет определенное количество очков, выигрывает. Игра прерывается; в это самое время один из игроков лидирует. Как справедливее всего разделить сумму? При разрешении этой проблемы, заметил де Мере, нужно учесть шансы каждого игрока на выигрыш исходя из того, у кого их, этих шансов, на момент прерывания игры больше. Но как произвести подсчет?

Паскаль сознавал, что, каким бы ни был ответ, методы для подсчета еще не изобрели, и эти методы, какими бы они ни были, могут иметь серьезные последствия в соревновательной ситуации любого рода. Как это часто случается в теоретических изысканиях, Паскаль испытывал неуверенность, даже замешательство по поводу своего плана действий. Он решил, что нужен посредник, то есть еще один математик, с которым можно было бы обсудить свои догадки. Марен Мерсенн, великий переговорщик, уже несколько лет как умер, однако Паскаль не порвал связей с членами Академии. И в 1654 г. завязалась одна из величайших переписок в истории математики: между Паскалем и Пьером де Ферма.

В 1654 г. Ферма занимал высокий пост — королевский советник парламента — в Тулузе. На заседаниях суда изысканно одетый Ферма занимался тем, что приговаривал согрешивших должностных лиц к сожжению. В свободное же от заседаний время Ферма прилагал свои аналитические способности к более изящным занятиям — занятиям математикой. Возможно, Пьер де Ферма и не был профессионалом, но за ним закрепилась слава величайшего математика.

Ферма получил видную должность отнюдь не благодаря своим честолюбивым устремлениям или неким заслугам. Она досталась ему старым, добрым способом — он постепенно поднимался по служебной лестнице, занимая кресла своих начальников, умиравших от чумы. Когда ему пришло письмо от Паскаля, Ферма и сам только-только начинал оправляться от этой болезни. Болезнь протекала настолько тяжело, что друг Ферма, Бернар Медон, успел объявить Ферма умершим. Когда же Ферма не умер, смущенный, но явно обрадованный Медон отозвал свое объявление, однако нет никаких сомнений в том, что Ферма одной ногой был уже в могиле. В конечном счете Ферма, который был старше Паскаля на двадцать два года, пережил своего новообретенного друга по переписке на несколько лет.

Как мы увидим, задача, связанная с очками, возникает в такой области, в которой оба, и Паскаль, и Ферма, соперничают. В ходе переписки Паскаль и Ферма разрабатывают свои подходы и предлагают несколько вариантов решения. Однако метод Паскаля оказался проще, да и изящнее, к тому же он мог быть применен к большому кругу задач, с которыми приходится сталкиваться в повседневной жизни. Поскольку задача впервые возникла в связи с заключением пари, возьмем пример на тему спорта. В 1996 г. команда «Смельчаки Атланты» победила «Нью-Йоркских Янки» в первых 2 играх бейсбольной Мировой серии (по условиям первая команда, победившая в 4 играх, становится чемпионом). Факт победы «Смельчаков» в первых 2 играх совсем не обязательно означал, что ее игроки сильнее других. И все же он служил знаком того, что они явно лучше. Для выполнения нашей текущей задачи предположим, что и та, и другая команды обладали равными шансами на победу в каждой игре, и что в первых 2 играх лишь по случайности выиграла команда «Смельчаки Атланты».

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже