Читаем Небесные магниты. Природа и принципы космического магнетизма полностью

Но какова же величина магнитного поля между пятнами? В среднем около 10 гаусс, то есть в сто раз меньше. Однако это только в среднем. На поверхности Солнца хорошо заметны небольшие детали с самыми разными значениями магнитного поля. Чем выше разрешение телескопа, то есть чем более мелкие детали мы различаем на этой поверхности, тем большие числа мы получаем для напряженности.

Замечательный швейцарский астроном Ян Стенфло вообще советовал не говорить о напряженности магнитного поля на Солнце, а употреблять его интегральную характеристику – магнитный поток[6]. Подобное парадоксальное строение типично для модных объектов, которые называются фракталами. В качестве примера часто приводят береговую линию Англии. Чем более подробную карту берут для вычисления длины этой береговой линии, тем больше получается эта длина. Оказывается, рост длины с увеличением детальности карты обратно пропорционален некоторой степени минимального масштаба, отраженного при построении карты.

В математике еще в начале XX в. была разработана система понятий, которая позволяет описывать подобные структуры. Основные идеи выдвинул немецкий математик Феликс Хаусдорф. Каждый может прочитать его очень ясную и интересную статью[7], опубликованную на излете Первой мировой войны и посвященную понятиям, которые позднее получили название хаусдорфовой размерности и меры (но для этого придется выучить немецкий язык). В физику эти идеи вошли после известной книги Мандельброта в 1970-е гг. В ней упомянут и Хаусдорф, но мельком.

Когда после тяжелого рабочего дня в Институте радиоастрономии в Бонне, посвященного обсуждению вопросов магнетизма галактик, гуляешь по городу, то проходишь мимо Международного математического центра имени Феликса Хаусдорфа. Именно в этом городе Хаусдорф покончил с собой в 1942 г., предпочтя это отправке в концлагерь. Теперь Центр служит горьким напоминанием для сограждан. Мне почему-то кажется, что подобный центр был бы полезен и нам. Даже не столько для развития математики, сколько для прояснения картины мира.

Разумеется, приятно, что изучение магнитных полей Солнца вписывается в такую модную тематику, как фракталы. Однако не совсем понятно, стали ли мы лучше понимать магнитные поля на Солнце после того, как осознали, что они образуют фрактальную структуру. Остановимся на том, что магнитное поле на поверхности Солнца меняется в широких пределах и достигает в солнечных пятнах килогауссных значений.

А какова же напряженность магнитного поля внутри Солнца? Здесь мы, к сожалению, вступаем в область догадок и разнообразных моделей, но уж меньше одного килогаусса оно никак быть не может. В самом деле, солнечные пятна выплывают из глубин Солнца и приносят оттуда с собой магнитное поле. Поэтому магнитное поле в пятнах дает представление о том, что происходит в глубине Солнца.

Конечно, хотелось бы знать больше, но путь к этим знаниям лежит через изучение того, как магнитное поле Солнца меняется во времени. Поскольку оно устроено так сложно, появляется необходимость вводить индексы солнечной активности – интегральные показатели, характеризующие магнитное поле Солнца в данный момент времени.

Нужно вводить много индексов – это связано с разнообразием проявлений солнечной активности. Например, солнечные пятна имеют различную величину, объединяются в группы. Кроме пятен, магнитное поле проявляется, например, в солнечных вспышках. Их тоже нужно как-то учитывать. Более того, в любой момент мы видим лишь половину солнечной поверхности, так что приходится тем или иным способом упорядочивать наши неполные сведения.

Одним из первых индексов солнечной активности было число Вольфа, введенное в 1849 г. швейцарским астрономом Рудольфом Вольфом и названное в его честь. Оно определяется как сумма числа солнечных пятен, видимых в данный момент на диске Солнца, и удесятеренного числа их групп. Чтобы практически вычислить число Вольфа, нужно как-то фиксировать понятие солнечного пятна и группы солнечных пятен. Эта фиксация зависит от разрешения телескопа, на котором ведется наблюдение. Кроме того, пятна и их группы заметно разнятся по своим свойствам, так что трудно сформулировать общепринятое и практически применимое определение этих понятий. Поэтому вычисление числа Вольфа зависит от опыта и квалификации наблюдателя. Для того чтобы сделать числа Вольфа, полученные разными наблюдателями, сравнимыми, вводят нормировочные коэффициенты, специфические для каждого наблюдателя. В последнее время интенсивно развиваются различные подходы к алгоритмическому определению чисел Вольфа и других индексов солнечной активности.

Другими известными индексами солнечной активности являются число солнечных пятен, число групп солнечных пятен, общая площадь солнечных пятен, а также индексы, связанные с излучением Солнца в различных спектральных диапазонах. При вычислении и публикации индексов используются их ежедневные, среднемесячные и т. п. значения.



Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

Как изменить мир к лучшему
Как изменить мир к лучшему

Альберт Эйнштейн – самый известный ученый XX века, физик-теоретик, создатель теории относительности, лауреат Нобелевской премии по физике – был еще и крупнейшим общественным деятелем, писателем, автором около 150 книг и статей в области истории, философии, политики и т.д.В книгу, представленную вашему вниманию, вошли наиболее значительные публицистические произведения А. Эйнштейна. С присущей ему гениальностью автор подвергает глубокому анализу политико-социальную систему Запада, отмечая как ее достоинства, так и недостатки. Эйнштейн дает свое видение будущего мировой цивилизации и предлагает способы ее изменения к лучшему.

Альберт Эйнштейн

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Политика / Образование и наука / Документальное