Читаем Небесные магниты. Природа и принципы космического магнетизма полностью

Важна также протяженность эпохи, для которой имеются данные о конкретном индексе солнечной активности. Индексы, связанные с наблюдением с помощью телескопов солнечных пятен и их групп, восстанавливаются с той или иной степенью определенности с начала XVII в., то есть эпохи изобретения телескопа. Конечно, степень их достоверности возрастает по мере приближения к современной эпохе. Начиная с последней четверти XIX в. становится возможной проверка данных разных обсерваторий путем их сравнения друг с другом и взаимной калибровки. Долговременный мониторинг индексов солнечной активности требует длительной рутинной работы и плохо вписывается в практику современной грантовой науки, так что задача поддержания и пополнения баз данных по индексам солнечной активности представляет проблему для общества наших дней.

Но, так или иначе, индексы активности вычисляются, и составляются их базы данных. Что же в них видно?

Во-первых, оказывается, магнитное поле Солнца меняется более или менее периодически.

Период, с которым меняется число солнечных пятен, близок к 11 годам – это знаменитый 11-летний цикл солнечной активности, или цикл Швабе. Он называется по имени немецкого аптекаря и астронома-любителя Генриха Швабе, который впервые заметил его на основе данных наблюдений солнечных пятен в 1844 г. К этому времени астрономы, среди которых было много первоклассных профессионалов, уже более 200 лет наблюдали с помощью телескопов за солнечными пятнами и не догадывались о наличии этой цикличности. Видимо, это произошло потому, что цикл заметен лишь при осмыслении данных за длительный период времени, поскольку длина цикла близка к 11 годам.

Солнечные пятна, то есть участки пониженной температуры солнечной поверхности, возникают в местах, где трубка сильного магнитного поля выходит на поверхность Солнца или входит под поверхность. Поэтому пятна объединяются в группы, для которых, имея наблюдения магнитного поля, можно ввести понятие полярности. С учетом полярности, то есть знака, оказывается, что два последовательных 11-летних цикла имеют противоположную полярность (см. ниже о правиле Хейла) и объединяются в один 22-летний цикл, так что физически более естественно говорить о 22-летнем цикле солнечной активности. Это можно сравнить с тем, что период синуса равен 2π, а период его модуля вдвое меньше.



Цикл Швабе (в форме 11- или 22-летних колебаний) виден практически во всех индексах солнечной активности.

Говоря об 11-летней длине цикла, нужно иметь в виду, что речь идет о номинальной длине. Последовательные циклы солнечной активности отличаются друг от друга и по длине, и по амплитуде. Однако отличия длин солнечных циклов от номинальной величины составляют десятки процентов, в то время как их амплитуды могут отличаться друг от друга в разы и десятки раз.

В частности, в середине, второй половине XVII в. и до начала XVIII в. солнечный цикл был чрезвычайно слабым и, возможно, на некоторое время исчезал вовсе. Эта эпоха называется минимумом Маундера – по имени английского астронома Уолтера Маундера, сыгравшего определяющую роль в опознании этого минимума. Первые догадки об аномальном поведении Солнца приходили в голову уже его современникам, от замечаний которых во многом отталкивался автор открытия. Представление об эпохе низкой активности Солнца входило в науку постепенно, поскольку непросто было убедительно обосновать, что во время этого минимума уменьшалось не количество регистраций солнечной активности, а ослаблялась сама солнечная активность. Этапом в восприятии представления о минимуме Маундера стало обнаружение аномалий солнечной активности в эту эпоху в данных о содержании радиоактивного изотопа углерода, производство которого на Земле связано с солнечной активностью. Следующий этап в восприятии этой концепции связан с восстановлением записи солнечной активности по данным о солнечных пятнах.

В эпоху минимума Маундера существенно снижается количество солнечных пятен, наблюдаемых в единицу времени, однако отдельные солнечные пятна иногда наблюдались на протяжении всего минимума. Наименьшая временная плотность солнечных пятен отмечалась в первое десятилетие минимума, на протяжении которого известно наблюдение одного солнечного пятна. Поскольку астрономы того времени не могли наблюдать малые солнечные пятна, нельзя с уверенностью утверждать, что их число также было мало.

Во время большей части минимума Маундера 11-летний цикл солнечной активности вовсе не виден (по данным о солнечных пятнах) или плохо заметен. Правда, в конце минимума 11-летнее колебание уверенно фиксируется, однако при этом почти все солнечные пятна находятся лишь в южном солнечном полушарии. По-видимому, это свидетельствует о возникновении в это время магнитной конфигурации, асимметричной относительно солнечного экватора.



Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

Как изменить мир к лучшему
Как изменить мир к лучшему

Альберт Эйнштейн – самый известный ученый XX века, физик-теоретик, создатель теории относительности, лауреат Нобелевской премии по физике – был еще и крупнейшим общественным деятелем, писателем, автором около 150 книг и статей в области истории, философии, политики и т.д.В книгу, представленную вашему вниманию, вошли наиболее значительные публицистические произведения А. Эйнштейна. С присущей ему гениальностью автор подвергает глубокому анализу политико-социальную систему Запада, отмечая как ее достоинства, так и недостатки. Эйнштейн дает свое видение будущего мировой цивилизации и предлагает способы ее изменения к лучшему.

Альберт Эйнштейн

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Политика / Образование и наука / Документальное