Читаем Небесные магниты. Природа и принципы космического магнетизма полностью

Широтно-временная диаграмма (или баттерфляй-диаграмма, то есть диаграмма бабочек) – удобный метод представления солнечных пятен и других трассеров солнечной активности в виде точек на плоскости, на горизонтальной оси которой откладывается время наблюдения, а на вертикальной – солнечная широта. Введена в физику Солнца Эдвардом Уолтером Маундером и его женой Энни Маундер. На баттерфляй-диаграмме солнечный цикл Швабе выглядит как две волны активности, которые бегут навстречу друг другу от средних широт к солнечному экватору. Каждый цикл по каждому полушарию распространяется одна волна.

Согласно правилу полярности Хейла, одна из этих волн, распространяющаяся в северном полушарии Солнца, содержит группы солнечных пятен одной полярности, а другая, распространяющаяся в южном полушарии, – противоположной. В следующем цикле волны в обоих полушариях меняют полярности.

Другими словами, крупномасштабное магнитное поле Солнца антисимметрично по отношению к солнечному экватору. Такой тип симметрии называется дипольным. В частности, магнитное поле диполя имеет дипольную симметрию.

Важное дополнение к правилу полярности Хейла сформулировано американским астрономом Джоем в той же работе. В соответствии с правилом Джоя углы между отрезком, соединяющим ведущее пятно с ведомым и экватором, противоположны по знаку в северном и южном полушариях Солнца и растут по модулю с ростом солнечной широты. Эти углы принято называть тилт-углами.

Правила и Хейла, и Джоя выполнены не для всех групп солнечных пятен. Встречаются группы сложного строения, к которым такие правила не всегда легко применить. Однако есть группы, нарушающие одно из них или оба. Правило полярности Хейла выражено более четко, чем правило Джоя. Поэтому до недавнего времени правило Хейла было гораздо более известно. Прогресс наблюдательной техники последнего десятилетия сделал возможным тщательное изучение симметрии, выраженной правилом Джоя, и оно быстро входит в круг интересов физики Солнца.

Исключения из правила Хейла интересны и потому, что позволяют хотя бы грубо оценить, насколько велики мелкомасштабные флуктуации магнитного поля в глубине Солнца. Получается примерно такое же отношение флуктуаций к среднему магнитному полю, как и для магнитного поля в галактиках.

Отрезки, соединяющие пятна, которые входят в группы, наклонены, согласно правилу Джоя, к солнечному экватору, но этот угол наклона небольшой. Поэтому данные о солнечных пятнах отражают в основном компоненту магнитного поля, направленную в азимутальном направлении. Ее называют тороидальной. На Солнце есть и более привычная компонента магнитного поля, похожая на поле постоянного магнита. Ее называют полоидальной. Ее напряженность заметно меньше килогаусса, но зато она не прячется в основном в недрах Солнца, как тороидальная компонента. Суммарной характеристикой полоидального магнитного поля служит его магнитный дипольный момент – он показывает, какой постоянный магнит должен находиться внутри Солнца, чтобы дать такое же магнитное поле, как и то, которое наблюдается на некотором удалении от поверхности Солнца.

Магнитный момент Солнца тоже осциллирует в соответствии с циклом Швабе. Есть и еще другие индексы, которые описывают, скажем, магнитное поле вблизи полюсов. Все они так или иначе вовлечены в цикл Швабе. Поэтому говорят о расширенном цикле, характерном для магнитного поля Солнца как целого.

3. Магнитные циклы звезд

На звездах, по крайней мере похожих на Солнце, тоже обнаруживаются магнитные циклы. Это, безусловно, ожидаемый результат. Было бы странно, если бы Солнце было в этом отношении чем-то совершенно особенным. Первые идеи о звездных циклах стали возникать около полувека назад, что гораздо меньше, чем время солнечных наблюдений, поэтому пока не так много можно уверенно сказать о звездных циклах.

Периоды этих циклов более или менее такие же, как на Солнце, или несколько короче. Не очень ясно, является ли это эффектом селекции: пронаблюдать длинный цикл труднее, чем короткий, – дольше нужно наблюдать.

Нет причин сомневаться в том, что звездные циклы – тоже проявления волн активности, порожденных волнами магнитного поля, как и на Солнце. В принципе, за время, прошедшее с начала 80-х гг. прошлого века, когда стало возможным картировать температуры на поверхности звезд, можно было бы попытаться построить звездные баттерфляй-диаграммы и выяснить, что представляют собой эти волны: распространяются ли они, как и волны активности на Солнце, от средних широт к солнечному экватору, есть ли на звездах что-то похожее на закон полярности Хейла и т. п.?

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

Как изменить мир к лучшему
Как изменить мир к лучшему

Альберт Эйнштейн – самый известный ученый XX века, физик-теоретик, создатель теории относительности, лауреат Нобелевской премии по физике – был еще и крупнейшим общественным деятелем, писателем, автором около 150 книг и статей в области истории, философии, политики и т.д.В книгу, представленную вашему вниманию, вошли наиболее значительные публицистические произведения А. Эйнштейна. С присущей ему гениальностью автор подвергает глубокому анализу политико-социальную систему Запада, отмечая как ее достоинства, так и недостатки. Эйнштейн дает свое видение будущего мировой цивилизации и предлагает способы ее изменения к лучшему.

Альберт Эйнштейн

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Политика / Образование и наука / Документальное