Как уже было отмечено, вероятность также имеет дело с черно-белым миром: орел или решка, победа или проигрыш. Вероятность лишь заключает точные события в рамки неравенства, предполагая некоторые шансы на успех или проигрыш. Как бы то ни было, ученые сводят все серое к черному или белому, прежде чем станут учитывать вероятность: электрон либо вращается вокруг атомного ядра, либо нет; опухоль в организме больного либо доброкачественная, либо злокачественная; клиент либо ждет в очереди, либо нет; облако либо обычное, либо – грозовая туча; звезда относится к Галактике или не относится к ней; Вселенная или открытая, или закрытая. На концептуальном уровне теория вероятности объединила Вселенную с неопределенным, ненаблюдаемым облаком случайности. На практике же она заставила ученых пытаться провести границы между предметами и понятиями. Вероятность превратила современную науку в своеобразное казино, где на кону истина.
Практическая работа началась примерно полтысячелетия назад, когда ученые разработали первую вероятностную математику, исходя из примеров азартных игр, игр наудачу, в которых были четко обозначены роли игроков. Позже, спустя два-три века, ученые применили вероятность к статистике заболеваемости и смертности городских жителей для того, чтобы предоставить некоторые математические данные отрасли страхования здоровья и жизни, и, соответственно, быть полезными. Либо человек был болен, либо нет, был женат или нет, был старше двадцати лет или нет, жил за чертой бедности или нет, был либо жив, либо мертв. Вероятность оказалась мощным инструментом социального прогнозирования и контроля. Но, тем не менее, то, как это смягчает несоответствие между логикой и фактом, оставалось неясным.
Представьте, что вы собираетесь оставить свой автомобиль на парковке, в распоряжении которой имеется 100 размеченных мест. Вероятностный подход предполагает, что вы припаркуете свой автомобиль на одном из размеченных мест, в то время как каждое парковочное место, имеющее свои четко очерченные границы, предполагает, что вы оставите свой автомобиль именно на нем. В таком случае обе эти вероятности будут составлять 100 %. В случае, если все парковочные места на автомобильной стоянке заняты, вероятность того, что для вас найдется свободное место на ней, сводится к нулю. В случае, если на парковке лишь одно свободное место, допустим, под номером 34, вероятность того, что вы припаркуетесь именно на нем, будет составлять все 100 %. Если же данная автомобильная стоянка полностью пуста, но вы понятия не имеете, скольким количеством мест она располагает, как свободных, так и занятых автомобилями, вероятность того, что вы сможете припарковать на ней свою машину, значительно снижается.
Итак, получается, что, в соответствии с вероятностным подходом, пример с парковкой также показывает на своем примере двухвалентность: вы либо сможете припарковаться на ней, либо нет. Прогулка по реальной стоянке показывает, что дела обстоят иначе. Автомобили не всегда стоят строго на местах, они могут располагаться в полном беспорядке, а также быть смещены к углам, создавая аварийную обстановку. Но в соответствии с вероятностным подходом один автомобиль должен располагаться на одном предназначенном ему месте.
При ближайшем рассмотрении предметы нечетки, а границы неточны и размыты, различные объекты сосуществуют друг с другом. Вы можете припарковать свой автомобиль на месте № 34, но случайно занять небольшую площадь места под № 35 рядом. В таком случае утверждение о том, что вы припарковали свой автомобиль на № 34, не будет полностью верным и истинным равно так же, как и утверждение о том, что вы не припарковали свой автомобиль на 34-м месте. Получается, что в большей степени вы и ваш автомобиль все-таки заняли 34-е парковочное место, а не 35-е. Но в какой-то степени получается, что вы заняли оба места. Однако же утверждение о том, что вы припарковали машину на 34-м месте, больше всего соответствует действительности.
Еще одним интересным примером здесь будет пример с учителем и его учениками в классе. Представьте, что учитель задает ученикам, сидящим за партами, какой-либо вопрос, и, как правило, те ученики, которые знают ответ на него, поднимают руку вверх, чтобы их спросили. Неважно, каким будет вопрос, интересен сам факт того, что ученики, которые готовы на него ответить, должны вытянуть руку вверх, в то время как те, которые не готовы, не должны тянуть руки. Пожалуй, это первый двухвалентный фильтр, с которым сталкиваются маленькие дети в школе: знание ответа – рука стремится вверх, незнание – ребенок не должен поднимать руку. Допустим, если он знает ответ лишь частично, не понимает, как объяснить ответ, то его рука должна оставаться на парте. В том случае, если ребенок поднимет руку и даст неполный ответ, скорее всего, учитель не расценит его ответ как правильный, то есть как ответ в целом.