Каковыми же должны быть такие частицы?
Юкава, разумеется, тоже начал считать.
И вот получилось, что кванты ядерных полей в отличие от фотонов должны обладать реальной — не нулевой — массой покоя. Другими словами, они не могут двигаться со скоростью света. Юкава так и назвал их — «тяжелые фотоны», И, кроме того, они должны быть очень недолговечны, — должны, очевидно, распадаться на те самые электрон и нейтрино, о которых думал Тамм. Для среднего времени жизни этих неведомых частиц у Юкавы получилась величина порядка миллионной доли секунды (10-6
). А для массы покоя — величина в 200–300 раз большая, чем масса электрона. И, наконец, у них есть заряд — плюс или минус.Портрет неизвестной частицы был начертан, оставалось «узнать ее в лицо»: открыть среди обитателей микромира.
В то время, в середине тридцатых годов, список элементарных частиц был еще очень короток. Три частицы, создающие все атомы:
Такова была добыча экспериментаторов и теоретиков за сорок лет пристального изучения микромира и его обитателей — пять открытых элементарных частиц и одна проблематическая! К нынешним дням этот список вырос более чем в пять раз. Так, может быть, образ рога изобилия, встретившийся нам в самом начале книги, был не таким уж страшным преувеличением?
Но всего интересней, что тогда, в 1935 году, физики еще не знали ни одной частицы, промежуточной по массе между легоньким электроном и тяжелым протоном. Казалось, природа и не позаботилась заполнить эту зияющую брешь. Казалось, что для создания всего разнообразия мира ей и не нужны были никакие другие частицы, кроме уже известных.
Юкава предсказал: есть элементарные частицы тяжелее электрона и легче протона, наделенные удивительным свойством краткости своего бытия.
Кстати, так ли удивительно это свойство? Стоит заговорить о мире элементарных частиц тем языком, каким люди говорят о мире живых существ, и эта краткость жизни ядерных квантов покажется вполне оправданной. Ведь если они есть в природе, то понадобились ей лишь для того, чтобы могли осуществляться могучие ядерные взаимодействия. А эти взаимодействия происходят на таких малых расстояниях, что у квантов ядерного поля нет прямой нужды далеко путешествовать, а следовательно, и долго жить. (Только, пожалуйста, не воспринимайте это как строгое научное объяснение краткости бытия частиц, предсказанных Юкавой. Это замечание между делом, для наглядности, для того, чтобы хоть на ощупь ориентироваться во тьме непонятностей природы.)
Хидэки Юкава предсказал еще, что его частицы должны появляться во вторичных космических лучах: когда первичные наносят мощные удары по земной атмосфере, атомные ядра в молекулах воздуха могут испытывать внутренние превращения и «выплескивать» в пространство энергию своих ядерных полей. Брызги этой энергии — ядерные кванты. Двигаясь с громадными скоростями, они могут успеть, несмотря на краткость жизни, пролететь до распада немалые расстояния. Значит, их можно поймать.
Прошло два года. Однажды американский физик Андерсон, — работавший со своим сотрудником Неддермайером, увидел на фотоснимке туманный след, прочерченный в камере Вильсона необычной частицей. Почуяв эту необычность, он решил провести детальные измерения и подсчеты. Кривизна, длина и массивность следа свидетельствовали, что на сей раз тоннель из тумана проложил строитель-тяжеловес, по сравнению с электроном, и строитель-легковес, по сравнению с протоном. Его масса была примерно в 200 раз больше электронной и примерно в девять раз меньше протонной.
По извечной традиции ученых — отыскивать в мертвых языках классической древности корни для научных терминов, Андерсон дал новой частице греческое имя: «мезотрон», или «мезон» (от слова «мезос». — промежуточный, средний, ибо такова была масса обнаруженной частицы).