Читаем Неизбежность странного мира полностью

Можно было подвергнуть сомнению две вещи — или неумолимость притяжения, или неизбежность излучения. Однако сомневаться во взаимном притяжении положительных и отрицательных зарядов не позволяли ни опыт, ни логика. Опыт подтверждал это постоянно, начиная с той легендарной поры, когда древние греки натирали янтарь и притягивали натертой палочкой всякую мелкую всячину. Само понятие электричества пошло отсюда, потому что по-гречески янтарь — «электрон». Стоней только вспомнил это слово, когда решил в 1891 году дать название еще не открытому гипотетическому единичному заряду. А логика говорила: если нет притяжения со стороны ядра, тогда электроны — вольные птицы, тогда вообще нет атома и не из-за чего копья ломать.

Оставалось усомниться в неизбежности излучения. Вот этой неизбежности вовсе не требовала логика и ее не подтверждал опыт. На ней настаивала лишь старая теория. Логика говорила: если излучение неизбежно, то атом обречен, а так как он устойчив, то, очевидно, такой неизбежности нет. Опыт вопрошал: если излучение обязательно, то оно должно происходить непрерывно, но тогда отчего же спектры атомного излучения прерывисты? Отчего разные атомы дают разные цветовые наборы отдельных спектральных линий?

Дело в том, что атомы действительно излучают световую энергию. Мы живем в разноцветном мире. Мириады сигналов о маленьких актах преломления, отражения, излучения света приходят к нам со всех сторон, ото всех веществ. Нет смысла гадать, как выглядел бы наш мир, если бы все атомы на протяжении всей своей жизни непрерывно излучали свет: зрелище такого мира, сотканного из обреченных атомов, было бы кратко, как мгновенный промельк кадра на вдруг оборвавшейся киноленте.

Да, атомы излучают. Но совсем не так, как полагалось бы по прогнозам старой теории.

Нужно ли рассказывать, почему в гранях призмы возникает радуга? Световые лучи разной частоты электромагнитных колебаний по-разному преломляются призмой и, входя в нее параллельным пучком, выходят веером. Физики пропускают смешанный световой поток через узкую щель, он падает на призму, и за нею — на экране или на фотопленке — появляется веер изображений щели: каждый луч определенной частоты дает свою фотографию щели — узкую полоску. Это и есть спектральная линия. Когда в смешанном потоке присутствуют лучи любой длины волны, в спектральном веере уже нельзя различить отдельных линий — следуя непрерывно друг за другом, они сливаются в одну сплошную полосу, красную на одном конце и фиолетовую на другом. Они сливаются в радугу.

Так выглядит спектр непрерывного излучения. Но атомные спектры выглядят вовсе не так. Они пунктирны: на темном фоне фотопластинки выстраивается частокол из отдельных линий. Для каждого элемента — свой частокол, строго свой!

Задолго до открытия электрона физики стали собирать коллекции атомных спектров. Это были, говоря шутливо, документы к «Делу об атоме», хотя сам подследственный еще оставался неуловимым. Ученые сравнивали разные спектры, измеряли длины волн для каждой спектральной линии, искали и находили закономерности их чередования. Но не имели при этом ни малейшего представления о том, как рождаются спектры. Наш известный физик-теоретик Яков Ильич Френкель лет тридцать назад писал, что «недаром с легкой руки Эйнштейна эта область физики… получила несколько презрительное название зоологии». Спектроскопия была похожа на столичный зоопарк, где рассаживают по клеткам, живую тварь всех видов, подвидов, мастей, ничего не зная о происхождении самой жизни. Но эта зоологическая стадия неминуема в любой науке. В атомной физике она была только уж очень подчеркнуто выражена.

Истинная модель атома обязана была объяснить, наконец, происхождение спектров. Иначе, о какой же истинности можно было бы говорить? Не о второстепенных деталях в поведении атомов рассказывали спектры, а о самом главном — об излучении электромагнитной энергии из атомных глубин, о переходах этих сложных микромиров из одного энергетического состояния в другое.

Атом Резерфорда выдержал такое испытание на истинность. Провел испытание Нильс Бор.

8

Перейти на страницу:

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
100 великих замков
100 великих замков

Великие крепости и замки всегда будут привлекать всех, кто хочет своими глазами увидеть лучшие творения человечества. Московский Кремль, новгородский Детинец, Лондонский Тауэр, афинский Акрополь, мавританская крепость Альгамбра, Пражский Град, город-крепость Дубровник, Шильонский замок, каирская Цитадель принадлежат прекрасному и вечному. «У камня долгая память», – говорит болгарская пословица. И поэтому снова возвращаются к памятникам прошлого историки и поэты, художники и путешественники.Новая книга из серии «100 великих» рассказывает о наиболее выдающихся замках мира и связанных с ними ярких и драматичных событиях, о людях, что строили их и разрушали, любили и ненавидели, творили и мечтали.

Надежда Алексеевна Ионина

История / Научная литература / Энциклопедии / Прочая научная литература / Образование и наука