Читаем Неизбежность странного мира полностью

Один неклассический закон Бор уже нащупал: у атомных электронов есть прерывистый ряд устойчивых орбит, у атомов — такой же ряд устойчивых энергетических состояний. Теперь надо было нащупать закон перехода из одного состояния в другое — закон излучения атома.

Раз плавного классического перехода быть не могло, в распоряжении логики оставался скачок. И Нильс Бор решился: он сказал — да, нужно признать, что электроны переходят с орбиты на орбиту не иначе, как скачками. Этого нельзя не признать, если только слушать голос природы, а не наставления старой теории!

А при скачке уже нет постепенной потери энергии на спиральном пути: все, что электрону предстоит потерять при переходе с одной дозволенной орбиты на другую, он теряет сразу — единым махом, единой порцией. И нет причин, чтобы при этом возникала многоцветная смесь электромагнитных волн разной длины. Естественно ожидать, что с каждой такой порцией атом исторгает излучение какой-то одной частоты колебаний — одного цвета. Это и подтверждает прерывистый вид атомных спектров.

Пройдя через призму, такая порция атомного света вся преломляется одинаково, и неоткуда взяться вееру. На фотопластинке появляется четкая линия, а не размазанная полоса. Так идеи Бора пришли к согласию с опытом.

Но в атомных спектрах не одна линия, а частоколы линий. Откуда они? Однако лучше спросить: о чем они говорят? Любая линия, взятая наугад, есть свидетельское показание о перескоке электронов с какой-то одной орбиты на другую., Множество линий свидетельствует о множестве возможных перескоков. И не просто возможных, а и действительно происходящих. Но это значит, что в атомах существует множество орбит, чем-то отличных одна от другой, так что разные переходы электронов сопровождаются потерями разных порций энергий. Разные порции — разные длины волн — разное преломление в призме — частокол линий в спектре…

Чем же отличаются эти устойчивые орбиты Бора, что их делает неравноценными? Неважно, какая у них форма: круги ли они, или эллипсы, или даже розетки. Важно только, что на разных орбитах у электронов разный запас энергии. Оттого перескоки и могут приводить к излучению: падая, какой-нибудь электрон теряет избыток энергии — то, что ему уже не нужно для устойчивого вращения на новой орбите.

Однако энергия атомного электрона принадлежит ведь всему атому. Электрон — его составная часть, его подданный. Электрон взаимодействует с атомным ядром. И когда он вращается по далекой от ядра орбите, ему нужно обладать большим запасом энергии, чем на близкой орбите: такой запас — единственное, что удерживает его вдали от ядра. Но этот запас — собственность всего атома. А так как природа разрешила электронам двигаться лишь по определенным орбитам, то, стало быть, она и атому разрешила обладать лишь определенными, а не любыми уровнями энергии, как говорят физики.

Прерывистый ряд разрешенных орбит… Прерывистый ряд разрешенных запасов энергии… Вот какие странные черты Проступили на смутной картине внутриатомной жизни, когда физики смогли, наконец, после открытия электрона пристально вглядеться в древнюю — «неделимую и простейшую» — крупицу материи. Но это было лишь началом неожиданностей.

9

Прерывистость состояний. Порции энергии. Скачки.

Что-то знакомое чувствуется за всем этим, не правда ли? Конечно! Тотчас вспоминаются кванты Планка и фотоны Эйнштейна. Сейчас от этого уже веет запахом истории — новой устоявшейся классикой самого XX века. Но в 1911–1913 годах молодому Нильсу Бору не пришлось копаться в своей памяти, чтобы вспомнить о порциях энергии и частицах света: они были спорной злобой дня, большинство физиков вообще не верило, что кванты существуют на самом деле, а не только в теории.

В ту пору даже слово «фотон» еще никем не было произнесено. Хотя это понятие Эйнштейн уже и ввел в науку в 1905 году, но слово еще не появилось. Со световой частицей произошла история, прямо противоположная той, что случилась с атомом электричества: электрон был сначала назван, а потом открыт, фотон был сначала открыт и лишь потом назван. Кванты света удостоились крещения — как настоящие частицы! — только через два с лишним десятилетия после своего рождения в науке. Фотонами их впервые назвал в 1926 году малоизвестный физик Н. Льюис.

Бор заглянул в самые глубины старого союза между светом и электричеством. Он увидел, что электроны и кванты света связаны родословными. Две первые элементарные частицы материи соединенными усилиями приоткрыли перед физиками ворота во внутриатомный мир. Бор заметил раньше других, что дорога больше не загорожена.

…Если не скучно, перелистайте страницы первой части этого рассказа и найдите то место, где шел разговор о скачкообразном рождении фотона. Теперь вы видите, что, по Бору, излучение рождается в атомном пространстве действительно скачками. Внутри атома, в одной из тех природных лабораторий, где может создаваться фотон, нельзя уследить за процессом его создания: атомы теряют энергию не постепенно, а сразу, и бессмысленно рисовать себе какой-то «период созревания» кванта.

Перейти на страницу:

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
100 великих замков
100 великих замков

Великие крепости и замки всегда будут привлекать всех, кто хочет своими глазами увидеть лучшие творения человечества. Московский Кремль, новгородский Детинец, Лондонский Тауэр, афинский Акрополь, мавританская крепость Альгамбра, Пражский Град, город-крепость Дубровник, Шильонский замок, каирская Цитадель принадлежат прекрасному и вечному. «У камня долгая память», – говорит болгарская пословица. И поэтому снова возвращаются к памятникам прошлого историки и поэты, художники и путешественники.Новая книга из серии «100 великих» рассказывает о наиболее выдающихся замках мира и связанных с ними ярких и драматичных событиях, о людях, что строили их и разрушали, любили и ненавидели, творили и мечтали.

Надежда Алексеевна Ионина

История / Научная литература / Энциклопедии / Прочая научная литература / Образование и наука