Читаем Неизбежность странного мира полностью

Не слишком ли долго топтались мы на подступах к новым неклассическим идеям внутриатомной механики? Не забыли ли мы зарок — не влезать в подробности? Может быть, грех и был, но есть и оправдание: при знакомстве с наукою нашего времени, — хочется повторить это, — труднее всего поверить в обязательность ее странных представлений о многих вещах. Я не беру в кавычки слово «странных», потому что именно такими кажутся часто современные физические представления. И нередко у людей XX века возникает сомнение: быть может, все-таки это не сама материя устроена так странно, а только головы физиков? Чтобы рассеялись эти сомнения, надо хоть на минуту почувствовать себя свидетелем рождения новых физических идей — побродить хоть недолго у самых истоков реки Непонятного. Тогда легче увериться, что даже наиболее причудливые черты в физической картине движущейся материи выдумала и тонко прорисовала своим вечным пером сама природа, а ученые если в чем и повинны, то лишь в непредвзятой зоркости.

Ради того, чтобы сполна почувствовать это, стоило бы и еще потоптаться на подступах к самому трудному подъему в затеянном нами путешествии по миру элементарных частиц. Избежать этого подъема нельзя. Но нет, наша цель не карабкаться вслед за учеными, а только понять, что они-то не могли не преодолевать крутизны! Так надо по крайней мере закинуть голову и увидеть, что готовой дороги не было, надо хоть взглядом смерить высоту…

Начинался подъем полого.

Нильс Бор сделал самое естественное предположение: раз атомы устойчивы, значит есть в атомном пространстве пути, двигаясь по которым электроны вовсе не излучают — не теряют энергии и потому-то не падают на ядро.

Какие это пути — любые? Ясно, что нет! Если бы неизвестные законы атома запрещали электронам излучать энергию на любом пути вокруг ядра, атомы вообще никогда не испускали бы световых волн. А как же тогда спектры?

Откуда они берутся?

Факты и логика заставили Бора прийти к простой, но неожиданной идее: атом устроен природой так, что среди бесконечного обилия всех мыслимых электронных путей существует набор устойчивых орбит. Пока электроны вращаются вокруг ядра по этим орбитам, атом пребывает в неизменном энергетическом состоянии. На таких избранных путях электроны действительно ведут себя, как идеальные планеты: они движутся, не теряя энергии. И весь атом в таких устойчивых состояниях действительно подобен солнечной системе: планеты-электроны подчиняются законам классической механики.

А дальше эта идея уже сама повела воображение физика. Вот по какой-нибудь причине, до которой нам нет сейчас никакого дела, один из электронов сорвался со своей удивительной орбиты. Что с ним произойдет? Ведь запрет на излучение кончится? Конечно. Так значит теперь, теряя энергию, электрон превратится в спутника и станет по спирали падать на ядро? Да, станет падать. Однако еще вдали от ядра какой-нибудь очередной виток спирали сможет слиться с трассой другой устойчивой орбиты. Тогда, едва попав на нее, электрон тотчас снова перестанет излучать. Потеря энергии прекратится — прекратится падение. Атом придет в новое состояние устойчивости.

Это похоже на то, как если бы мячик спокойно катился по коридору, скажем, шестого этажа и не падал вниз, хотя земля его и притягивает. Но, угодив нечаянно в дырку, он уже избежать падения не смог бы. Однако его почти тотчас подхватил бы пол пятого этажа. Попав на уровень этого нижнего коридора, он уже снова начал бы спокойно катиться, не боясь падения, пока новая дырка снова не подвела бы его. Впрочем, и тогда ниже коридора четвертого этажа он сразу не провалился бы.

Так, одна за другой, этаж за этажом, следуют на разных расстояниях от ядра устойчивые орбиты Бора.

Что же получается? На орбитах действуют законы классической механики, а в пространстве между орбитами, где электрон излучает, вступают в силу законы классической электродинамики.

Вот отчего можно было сказать, что подъем на кручи новых идей начинался полого: казалось, Бор не вышел за пределы двух классических теорий, только каждой из них он отвел свое место. Однако это лишь казалось. Крутизна была уже тут как тут.

Наглядную картинку — шарик-электрон переходит по спирали с орбиты на орбиту — сразу пришлось отвергнуть. Она не могла быть верна! При таком переходе излучение электрона между орбитами снова должно было бы оказаться непрерывным: по мере сужения витков спирали он испускал бы световые волны все укорачивающейся длины. В спектре атомного излучения такой переход отразился бы размытой полоской: каждая длина волны дала бы свое изображение щели — непрерывно следуя друг за другом, линии слились бы в сплошной участок радуги, узкий или широкий — это уже не важно. А сплошных многоцветных полосок в атомных спектрах нет — есть только четкие линии определенной длины волны! Нет, примирение с классикой не могло состояться: классическая непрерывность движения опять вступала в противоречие с прерывистостью излучения атомов. (Недаром физики просили босого господа бога продиктовать им хотя бы парочку новых законов.)

Перейти на страницу:

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
100 великих замков
100 великих замков

Великие крепости и замки всегда будут привлекать всех, кто хочет своими глазами увидеть лучшие творения человечества. Московский Кремль, новгородский Детинец, Лондонский Тауэр, афинский Акрополь, мавританская крепость Альгамбра, Пражский Град, город-крепость Дубровник, Шильонский замок, каирская Цитадель принадлежат прекрасному и вечному. «У камня долгая память», – говорит болгарская пословица. И поэтому снова возвращаются к памятникам прошлого историки и поэты, художники и путешественники.Новая книга из серии «100 великих» рассказывает о наиболее выдающихся замках мира и связанных с ними ярких и драматичных событиях, о людях, что строили их и разрушали, любили и ненавидели, творили и мечтали.

Надежда Алексеевна Ионина

История / Научная литература / Энциклопедии / Прочая научная литература / Образование и наука