Итого после написания всех чисел от 1 до 99 было написано 189 цифр. От 1 до 999 было написано 2889 цифр. Значит, тысячная цифра содержалась в трехзначном числе. Первое трехзначное число содержало с 190-й по 192-ю цифру. Чтобы добраться до тысячной цифры надо написать 1000 — 189 = 811 цифр, начиная с числа 100. На каждое число уходит 3 цифры. Значит, нужно написать 811: 3 = 270 полных чисел и еще одну цифру. 270-е число после числа 99 — это число 371. Тысячная цифра — первая цифра числа 372.
Задача 65.
Смотри задачу 45.
Задача 66.
Осуществляется подбором. 1 + 2 + 3 = 1 — 2 — 3 = 6.
Задача 67.
Уменьшаемое является произведением, содержащим множитель 25 и множитель 16, а значит, делится на 100. Значит, уменьшаемое оканчивается двумя нулями, а все выражение — цифрами 12.
Задача 68.
Второе число получается из первого умножением на 10, третье из второго — умножением на 2, далее снова умножением на 10 и т. д. Можно и дальше действовать так же, чередуя умножение на 10 и на 2.
Задача 69.
(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12) + 11.
Задача 70.
Решение получается из рисунка:
Задача 71.
Смотри задачу 59.
Число 3 не может стоять в угловой клетке, так как 3 входит только в две тройки, дающие в сумме 15 (3 + 4 + 8 и З + 5 + 7), а угловая клетка входит в один столбец, в одну строку и в одну диагональ, то есть участвует в трех суммах.
Задача 72.
На первое место можно поставить любое из четырех произведений, на второе — любое из трех оставшихся. Значит, выбор первых двух произведений можно осуществить 12 способами. В любом из этих способов третьим можно поставить любое из двух оставшихся произведений. Так что первые три произведения можно назвать 24 способами. Теперь последнее произведение определяется однозначно — это то, которое не названо среди первых трех. Значит, всего можно определить порядок следования произведений 24 способами. Кратко это решение можно высказать так: первым может быть исполнено любое из четырех музыкальных произведений, вторым — любое из трех оставшихся, третьим — любое из двух оставшихся, четвертым — одно оставшееся; значит, всего таких программ 4 · 3 · 2 · 1 = 24.
Задача 73.
Обычный ответ: «100 котов» — неверен. Правильный ответ: «6 котов». Чтобы это понять, полезно себе представить 6 котов как единую «бригаду», которая за 6 минут съедает 6 мышей, а значит, в 1 минуту съедает 1 мышь. Но тогда она съест 100 мышей за 100 минут, что и требуется.