Читаем Нестандартные задачи по математике в 3 классе полностью

Задача 153.Два туриста варили в котле похлебку. Один положил в нее 3 пакета питательных веществ, а другой 5 пакетов. К ним подошел еще один турист, и они втроем всю похлебку съели. Третий турист заплатил за угощение 8 рублей. Как должны были разделить между собой эти деньги первые два туриста?

Это трудная задача. Ответ: «Первому туристу 3 рубля, второму — 5 рублей» — неверен. Правильно разделить деньги так: «Первому туристу 1 рубль, второму — 7 рублей». Дело в том, что первые два туриста тоже ели похлебку. Первый съел одну треть похлебки, второй одну треть и третий одну треть. 8 рублей, которые заплатил третий турист — стоимость одной трети похлебки. Значит, вся похлебка стоила 24 рубля.

Каждый пакет питательных веществ поэтому стоил 3 рубля. Первый турист съел похлебки на 8 рублей, а положил 3 пакета, то есть вложил в общую еду 9 рублей. Ему полагается 1 рубль. Второй турист вложил 5 пакетов, то есть 15 рублей, а съел похлебки на 8 рублей. Ему полагается 7 рублей.

Ответ: Первому 1 рубль, второму 7 рублей.

Задача 154. 16 волейбольных команд играют между собой по олимпийской системе. В 1 /8 финала встречаются все команды по парам; проигравшие выбывают, остается 8 команд-победителей. В 1/4 финала эти команды встречаются между собой по парам, проигравшие выбывают, остается 4 команды. В 1/2 финала эти команды встречаются между собой по парам. Остаются 2 команды. Они встречаются в финале. Сколько матчей при этом происходит?

Можно считать, сколько матчей в 1 / 8 финала, сколько в 1 / 4 финала и так далее. А можно просто сообразить, что из 16 команд останется одна, а остальные 15 выйдут из игры, и каждая — после одной проигранной встречи. Значит, всего встреч — 15.

Ответ: 15.

Задача 155. В корзине яблоки трех сортов. Сколько яблок нужно вынуть из корзины, не заглядывая в нее, чтобы среди них оказалось хотя бы 3 яблока одного сорта?

Может быть, нам повезет, и первые же три яблока окажутся одного сорта. Но может, и не повезет, и мы вынем целых шесть яблок по два разных сортов. Но седьмое яблоко будет уже одного сорта с какими-нибудь двумя, вынутыми раньше.

Ответ: От трех до семи.

Задача 156. Нарисуй обе половинки одинаково.

Задача 157. Расшифруй ребус: Я · ЛЯ = ОЛЯ.

От умножения Я на ЛЯ получается число, оканчивающееся на Я. Это возможно, если Я равно 0, 1, 5 или 6. Я = 0 не может быть, так как от умножения нуля на любое число должен получиться нуль, а умножение Я на ЛЯ дало не Я, а ОЛЯ. Я = 1 не может быть, так как от умножения единицы на любое число должно получиться это число, а умножение Я на ЛЯ дало не ЛЯ, а ОЛЯ. Остается проверить Я = 5 и Я = 6.

Если Я = 5, то ребус выглядит так: 5 · Л5 = 0Л5. Приходится проверять все значения Л, кроме 0 и 5. Получаем два подходящих результата: 5 · 25 = 125 и 5 · 75 = 375.

Если же Я = 6, то ребус выглядит так: 6 · Л6 = ОЛ6. Это невозможно. Убедиться в этом можно последовательной проверкой всех Л, кроме 0 и 6. Но можно доказать это и короче. Ведь если умножить 6 на Л6, то получится 60Л + 36. Значит, цифра десятков в произведении должна быть тройкой, и достаточно проверить только Л =3.

Ответ: 5 · 25 = 125 или 5 · 75 = 375.

Задача 158. Кота Барсика посадили в подвал за дурное поведение. Барсик питался там одними мышами. Он поймал их за 4 дня 80 штук. При этом его мастерство день ото дня возрастало, и он каждый день ловил столько мышей, сколько во все предыдущие дни вместе. Сколько мышей поймал Барсик в каждый из этих четырех дней?

В четвертый день он поймал столько же, сколько во все предыдущие дни. Значит, в четвертый день он поймал половину всех мышей. И так далее.

Ответ: 10, 10, 20, 40.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже