Задача 153.
Это трудная задача. Ответ: «Первому туристу 3 рубля, второму — 5 рублей» — неверен. Правильно разделить деньги так: «Первому туристу 1 рубль, второму — 7 рублей». Дело в том, что первые два туриста тоже ели похлебку. Первый съел одну треть похлебки, второй одну треть и третий одну треть. 8 рублей, которые заплатил третий турист — стоимость одной трети похлебки. Значит, вся похлебка стоила 24 рубля.
Каждый пакет питательных веществ поэтому стоил 3 рубля. Первый турист съел похлебки на 8 рублей, а положил 3 пакета, то есть вложил в общую еду 9 рублей. Ему полагается 1 рубль. Второй турист вложил 5 пакетов, то есть 15 рублей, а съел похлебки на 8 рублей. Ему полагается 7 рублей.
Задача 154.
Можно считать, сколько матчей в 1 / 8 финала, сколько в 1 / 4 финала и так далее. А можно просто сообразить, что из 16 команд останется одна, а остальные 15 выйдут из игры, и каждая — после одной проигранной встречи. Значит, всего встреч — 15.
Задача 155.
Может быть, нам повезет, и первые же три яблока окажутся одного сорта. Но может, и не повезет, и мы вынем целых шесть яблок по два разных сортов. Но седьмое яблоко будет уже одного сорта с какими-нибудь двумя, вынутыми раньше.
Задача 156.
Задача 157.
От умножения Я на ЛЯ получается число, оканчивающееся на Я. Это возможно, если Я равно 0, 1, 5 или 6. Я = 0 не может быть, так как от умножения нуля на любое число должен получиться нуль, а умножение Я на ЛЯ дало не Я, а ОЛЯ. Я = 1 не может быть, так как от умножения единицы на любое число должно получиться это число, а умножение Я на ЛЯ дало не ЛЯ, а ОЛЯ. Остается проверить Я = 5 и Я = 6.
Если Я = 5, то ребус выглядит так: 5 · Л5 = 0Л5. Приходится проверять все значения Л, кроме 0 и 5. Получаем два подходящих результата: 5 · 25 = 125 и 5 · 75 = 375.
Если же Я = 6, то ребус выглядит так: 6 · Л6 = ОЛ6. Это невозможно. Убедиться в этом можно последовательной проверкой всех Л, кроме 0 и 6. Но можно доказать это и короче. Ведь если умножить 6 на Л6, то получится 60Л + 36. Значит, цифра десятков в произведении должна быть тройкой, и достаточно проверить только Л =3.
Задача 158.
В четвертый день он поймал столько же, сколько во все предыдущие дни. Значит, в четвертый день он поймал половину всех мышей. И так далее.