Читаем Нестандартные задачи по математике в 3 классе полностью

6 часов вдвое больше, чем 3 часа, поэтому автобус пройдет за 6 часов вдвое больший путь, чем за 3 часа, то есть за 6 часов он пройдет 200 км · 2 = 400 км.

Ответ: 400 км.

Задача 124. Какая цифра в задаче на вычисление пропущена: (78534 — 7853__): 5?

Чтобы число, стоящее в скобках, делилось на 5, оно должно оканчиваться либо на 5, либо на 0. Для этого вычитаемое должно оканчиваться либо на 9, либо на 4. Однако, если бы вычитаемое оканчивалось на 9, то оно было бы больше уменьшаемого.

Ответ: 4.

Задача 125.Какими четырьмя гирями можно отмерить любой вес от 1 до 40 г, если класть гири на обе чаши весов?

Чтобы взвесить 1 г, возьмем гирю в 1 г. Чтобы взвесить 2 г, возьмем гирю не в 2 г, а сразу в 3 г. Тогда можно будет взвесить также 3 г и 4 г. Следующий вес — 5 г. Возьмем наибольшую возможную для этого гирю — 9 г. Тогда 5 г получится как 9 — (1 + 3), а кроме того можно будет отмерить любой вес от 6 до 13 г (6 = 9 — 3, 7 = 9 + 1 — 3; 8 = 9 — 1 и т. д. до 13 = 1 + 3 + 9). Нам можно взять еще одну — четвертую гирю. Возьмем ее побольше, но чтобы с ее помощью можно было взвесить 14 г. Так как у нас есть возможность взвесить 13 г, то возьмем четвертую гирю в 27 г. Тогда 14 г получится как 27 — 13. Легко проверить, что взятыми четырьмя гирями можно отмерить любой вес от 1 до 40 г. (1 + 3 + 9 + 27 = 40).

Ответ: 1 г, 3 г, 9 г, 27 г.

Замечание для учителя: эти числа — степени числа 3. Продолжая этот ряд гирь, мы получим возможность минимальным числом гирь отмеривать любые веса с использованием для гирь обеих чаш весов.

Задача 126. Перерисуй по клеткам треугольник ABC, а потом и весь рисунок.

Задача 127. Расшифруй ребус: УДАР + УДАР = ДРАКА.

Перепишем ребус столбиком:

Ясно, что первая цифра суммы Д = 1, так как сумма двух четырехзначных чисел не может превышать 19999. Ребус приобретает такой вид:

Третья цифра суммы А равна либо 2, либо 3. Однако, цифра А стоит в конце суммы и получается от сложения двух равных чисел Р. Значит, А — четная цифра, она не 3, а 2. Снова перепишем ребус:

Сумма Р + Р может дать на конце двойку в двух случаях: при Р = 1 и при Р = 6. Однако, Р = 1 невозможно, поскольку Д = 1. Значит, Р = 6, К= 5, а У либо 3, либо 8. Но так как сумма пятизначная, то У = 8.

Ответ: 8126 + 8126 = 16252.

Задача 128. Попытайся понять, как составлена эта последовательность, и продолжи ее: 1, 2, 6, 24, 120, 720.

Второе число получается из первого умножением на 2, третье из второго умножением на 3 и т. д.

Ответ: 1, 2, 6, 24, 120, 720, 5040…

Задача 129. На поле а1 шахматной доски стоит ладья. Два игрока передвигают ее по очереди, либо вправо, либо вверх на любое число клеток. Выиграет тот, кто поставит ладью на поле h8. Кто победит при правильной игре, первый или второй игрок, и как он должен играть?

Первый игрок при своем ходе обязательно уведет ладью с диагонали a1 — h8, на которой она стоит в начале игры. Второй игрок обязательно выиграет, если будет каждым своим ходом возвращать ладью на эту диагональ. Не следует сразу открывать детям этот секрет. Полезнее поиграть с ними на переменах (например, пообещав поставить пятерку за победу над учителем). Рано или поздно они поймут, что выигрывает всегда второй, а затем и — как он это делает.

Ответ: Выигрывает второй, возвращая ладью на главную диагональ.

Задача 130. По круговой беговой дорожке длиной 400 м бегут Андрей и Виктор. Андрей бежит быстрее и обгоняет Виктора через каждые 12 минут. Через 36 минут после начала бег был прекращен. Кто пробежал больше и на сколько?

Андрей пробежал больше, чем Виктор, так как бежал то же время с большей скоростью. За каждые 12 минут Андрей пробегает на 1 круг больше, чем Виктор. Значит, за 36 минут Андрей пробежал на 3 круга больше, а три круга — это 1200 м.

Ответ: Андрей пробежал больше на 1200 м.

Задача 131. Сумма и произведение четырех чисел равны 8. Что это за числа?

Осуществляется подбором: 1 + 1+ 2 + 4=1· 1· 2· 4

Ответ: 1, 1, 2 и 4.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже