Читаем Нестандартные задачи по математике в 3 классе полностью

Задача 114. Имеются 8 монет. Одна из них фальшивая (отличается от других по весу). Имеются чашечные весы. Сколько взвешиваний тебе понадобится, чтобы узнать, легче или тяжелее фальшивая монета, чем настоящая?

Первым взвешиванием сравниваем две четверки монет. Вторым взвешиванием сравниваем две пары монет из какой-нибудь четверки. Если во втором взвешивании весы уравновесились, то фальшивая монета — среди другой четверки, а если нет, то она — во взвешиваемой четверке. Тем самым становится ясно, легче она или тяжелее, чем настоящая.

Ответ: 2.

Задача 115. Можно ли выложить, соблюдая правила игры в домино, все косточки так, чтобы на одном конце оказалась шестерка, а на другом — пятерка?

В комплекте косточек домино семь косточек имеют шестерку: 0–6, 1–6, 2–6, 3–6, 4–6, 5–6 и 6–6. Если цепочка начинается с одной из шестерок (не считая косточки 6–6), то еще четыре косточки следуют парами и остается одна незакрытая шестерка, которая и должна завершать цепочку. При этом косточка 6–6 может стоять где угодно между двумя другими шестерками или на конце цепочки.

Ответ: Нет.

Задача 116. Перерисуй по клеткам треугольник ABC.

Задача 117. Расшифруй ребус: АР + РАК = АКР. Перепишем ребус столбиком:

Так как Р + К = Р, то К = 0. Теперь ребус приобретает такой вид:

Отсюда А = 5, а Р = 4.

Ответ: 54 + 450 = 504.

Задача 118. Размести круглые числа от 20 до 100 в клетках этого квадрата, чтобы суммы чисел по всем горизонталям, вертикалям и диагоналям равнялись между собой. Сколько таких размещений можно придумать?

Смотри задачу 59. Центр заполняется числом 60, так как это единственное число, входящее в четыре тройки, дающие в сумме 180, а центральная клетка входит в один столбец, одну строку и две диагонали, то есть участвует в четырех суммах. Верхний левый угол можно заполнить любым из чисел 30, 50, 70 и 90, так как каждое из этих чисел входит в три тройки. После этого нижний правый угол заполняется однозначно. Верхний правый угол заполняется одним из двух оставшихся чисел, входящих в три тройки, после чего весь квадрат заполняется однозначно.

Ответ: Восемь возможных квадратов:

Задача 119. Знаешь ли ты, что среди всех видов кошачьих только гепарды не втягивают когти. Когти у них всегда выпущены, как у собак. Среди обитателей площадки молодняка в зоопарке 18 котят и щенят разных пород. Из них 9 малышей — щенята, а 13 не втягивают когти. Сколько обитателей — гепарды и сколько обитателей — котята других пород?

Среди 13 малышей, не втягивающих когти, 9 — щенята, значит, 4 — гепарды. Котят других пород 18 — (9 + 4) = 5.

Ответ: 5.

Задача 120. Какое число пропущено в следующем равенстве?

844 + 289 — __ =289.

Ответ: 844.

Задача 121. 1 сентября 2003 г. — понедельник. Какой день недели 1 сентября 2004 г.? Сделайте более общий вывод.

В данной задаче нужно выяснить:

1) сколько дней между 1 сентября 2003 г. и 1 сентября 2004 г. (так как 2004 год — високосный, то 366 дней);

2) каким днем является день «понедельник + 366 дней» (так как 366 дней — это 52 недели плюс два дня, то «понедельник + 366 дней» — это среда).

Ответ: 1 сентября 2004 г. — среда. Более общий вывод: високосный год продвигает календарь на два дня недели вперед.

Задача 122. Из Анино в Ванино можно проехать через Борисово или через Гушино. Сколько всего путей ведет из Анино в Ванино?

Через Борисово можно проехать в Ванино шестью путями, а через Гушино тремя, итого девятью.

Ответ: 9.

Задача 123.За 3 часа автобус проходит 200 км. Сколько километров пройдет этот автобус за 6 часов с той же скоростью?

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже