Прежде чем решать эту задачу, надо хорошо понять ее необычные условия. Для этого полезно разобрать, что получится, если лифт остановится, например, на четвертом этаже. Тогда без неудовольствий окажется жилец 4 этажа. Жилец 5 этажа получит двойное неудовольствие, так как ему придется подняться на один этаж (с 4 на 5). Жилец 3 этажа получит одно неудовольствие, жилец 2 этажа — два неудовольствия. Впрочем, еще лучше, если жилец 2 этажа поднимется пешком с 1 этажа на 2: неудовольствий столько же, а лифт не так загружен. Итого, если лифт остановится на 4 этаже, получится 2 + 1 + 2 = 5 неудовольствий. Чтобы выяснить, какое решение самое экономное, составим таблицу.
Задача 30.
Надо находить суммы пар чисел, одинаково удаленных от концов ряда. Они равны между собой: 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101 и так далее. Таких пар, а значит, таких сумм будет 100: 2 = 50. Значит, общая сумма равна 101 · 50 = 5050.
Задача 31.
Сумма первых трех цифр равна 1 + 9 + 8 = 18, эти цифры долго не менялись и долго не будут меняться. Менялись и будут меняться последние цифры, но их сумма должна быть равна тоже 18. Первая из этих трех цифр 6 долго не менялась и не будет меняться. Значит, нужно, чтобы сумма двух последних цифр равнялась 12. Перед числом 75 такое ближайшее число 66, а после 75 — число 84.
Задача 32.
Так как числа круглые, то они оканчиваются нулем, а так одна цифра не повторяется, то на первые три места можно ставить любые из оставшихся четырех четных цифр (не повторяя их). На место можно поставить любую из четырех четных цифр, от 2 до 8. На второе — любую из трех оставшихся цифр. Значит, первые два могут быть заняты двенадцатью способами: 24_0, 26_0, 28_0; 42_0 46_0, 48_0; 62_0, 64_0, 68_0; 82__0, 84_0, 86__0. В любом из этих случаев третье место можно занять любой из двух оставшихся цифр. Например, в случае 24_0 третье место можно занять цифрами 6 или 8. Значит всего чисел получится 24. Кратко это решение можно высказать так: первой может быть любая из четырех цифр, второй — любая из трех оставшихся цифр, третьей — любая из двух оставшихся цифр, четвертой — только одна цифра нуль; значит, всего таких чисел 4 · 3 · 2 · 1 = 24
Задача 33.
В 1 км содержится 1000 м, а в 1 м содержится 100 см, значит, в 1 км содержится 100000 см. Если масштаб карты 1:400000, значит, в 1 см карты содержится 400000 см, то есть 4 км.
Задача 34.
51: _ — 12?
Здесь пропущено число, на которое делится число 51, то есть либо пропущено число 1, либо 3, либо 17, либо 51. Но если пропущено 17 или 51, то получатся выражения, не имеющие смысла: 51: 17 — 12 или 51: 51 — 12.
Задача 35.
Обозначим цену русской марки буквой р, немецкой — буквой н, французской — буквой ф, английской — буквой а. Тогда
н + ф + а = 40,
р + ф + а = 45,
р + н + а = 44,
р + н + ф = 27.
Сложив все эти равенства, получим Зр + Зн + Зф + За =156, р + н + ф + а = 52, р = 12.