Первое произведение оканчивается на 2, второе на 0, значит, разность оканчивается на 2.
Задача 18.
По условию, сундук с камнями левее красного, а сундук с книгами правее красного. Значит, красный сундук стоит посередине и в нем лежат золотые монеты:
Так как зеленый и синий сундук — крайние и зеленый стоит левее синего, то зеленый — крайний слева, а синий — крайний справа:
Вспоминая, что камни левее, а книги правее красного сундука, приходим к выводу, что камни лежат в зеленом, а книги — в синем сундуке.
Нарисуем два круга. Левый пусть обозначает рыжих котят, а правый — пушистых котят. Возможны разные варианты рисунка. На первом имеются котята, рыжие и пушистые одновременно. На втором таких котят нет.
Если бы правильным был первый рисунок, то тогда рыжих не пушистых котят было бы меньше восьми на то число, сколько котят находится в общей части кругов (на нашем рисунке таких котят х), пушистых не рыжих было бы меньше семи на то же число (у нас на х). Значит, всего котят было бы меньше 15. А на втором рисунке их как раз 15. Значит, правильный — второй рисунок.
Решение понятно из рисунка:
В данной задаче нужно выяснить:
сколько дней прошло с 1 февраля 1996 г. до 1 марта 1996 г. (так как 1996 г. был високосным, то в феврале было 29 дней);
каким днем является день «четверг + 29 дней» (так как 28 дней — это ровно 4 недели, то «четверг + 28 дней» — снова четверг, а «четверг + 29 дней» — пятница).
Полезно составить календарь на февраль 1996 г. Из него станет ясно, что ответ получен правильный.
На первое место можно поставить любую из четырех четных цифр (трехзначное число не может начинаться нулем). На второе место можно поставить любую из четырех оставшихся цифр (так как повторяться цифры не могут). Значит, первые два места могут быть заняты шестнадцатью способами: 20_, 24_, 26_, 28_; 40__, 42_, 46_, 48; 60__, 62__, 64_, 68_; 80_, 82_, 84_, 86_. В любом из этих случаев третье место можно занять любой из трех оставшихся цифр. Например, в случае 20_ третье место можно занять цифрами 4, 6 или 8. Значит, всего чисел получится 48. Кратко это решение можно высказать так: первой может быть любая из четырех цифр, второй — любая из четырех оставшихся цифр, третьей — любая из трех оставшихся цифр; значит, всего таких чисел 4 · 4 · 3 = 48.