Задача 35а.
Сколько заплатили вместе все четверо?
40 + 45 + 44 + 27 = 156 (руб.).
По сколько марок каждой страны они купили? 4–1=3.
Сколько стоят вместе одна русская, одна немецкая, одна французская и одна английская марки? 156: 3 = 52 (руб.).
Сколько стоит одна русская марка? 52 — 40 = 12 (руб.).
Задача 36.
Нужно от точки А пройти четыре клетки вправо, а затем столько же вверх.
Задача 37.
Так как в произведение входят числа 4892 и 4895, то оно оканчивается нулем.
Задача 38.
3 из 2 можно получить прибавлением единицы, 5 из 3 можно получить прибавлением двойки, 8 из 5 — прибавлением тройки. Можно и дальше прибавлять к числу на 1 больше, чем в предыдущем случае.
Задача 39.
Надо вынуть шарик из ящика с надписью «Один белый и один черный». Эта мысль может родиться из соображений симметрии: только этот ящик «симметричен сам себе», не имеет другого симметричного. Если мы вынем белый шарик, в этом ящике лежат два белых шарика, а если черный — два черных.
Задача 40.
Так как произведение двух множителей равно нулю, то один из них равен нулю. Первый множитель не равен нулю, значит, равен нулю
второй множитель. Получается, что 869 — __ = 0, а значит, пропущено число 869.
Задача 41.
В данной задаче нужно выяснить:
сколько дней прошло с 1 февраля 2000 г. до 1 марта 2000 г. (так как 2000 г. был високосным, то в феврале было 28 дней);
каким днем является день «вторник + 28 дней» (так как 28 дней — это ровно 4 недели, то «вторник + 28 дней» — снова вторник).
Задача 42.
На первое можно взять одно из трех блюд, которые кратко обозначим Щ, Б, Г. На второе можно взять любое из двух блюд: Р или К. Значит, обед может быть записан так: ЩР, ЩК, БР, БК, ГР или ГК.