Одним из применяемых нами методов отрицания лжеучений — и это полностью применимо к означенным нумерологиям — является способ, основанный на доведении мнения оппонента до логического абсурда. Как вам понравится, например, такое открытие: если складывать до тех пор, пока это возможно (а так поступают все без исключения нумерологи), значащие цифры числа, записанного не в десятичной, а в двоичной системе счисления и обозначающего любой стих Библии, предварительно приписав каждой букве соответствующее числовое значение, то мы во всех случаях неизменно получим
Единица, прибавленная к единице, в двоичной системе счисления даст число 10, и мы должны будем вновь, как учат нумерологи, продолжить сложение значащих цифр уже полученной суммы, — а такой результат дает опять-таки единицу.
Вероятно, стоит пояснить эту сторону двоичной арифметики. В двоичной системе счисления существует лишь два знака (символа): ноль (0) и единица (1). Понятное дело, что сами по себе сии символы полностью идентичны привычным нам десятичным знакам, однако этим внешнее сходство и заканчивается. Если к единице прибавить другую единицу, то в числе, обозначающем сумму (двойку десятичной системы), в разряде единиц уже не будет места, но даже если такое место и было бы чисто механически образовано, мы не имеем других знаков для обозначения цифр, кроме ноля и единицы. Точно так же нет места в разряде единиц и в десятичной системе, когда мы прибавляем единицу к девяти. Но на этот случай изобретена такая система записи (символика), когда в разряде единиц остается ноль, но единица появляется в разряде десятков: 9 + 1 = 10. Так и в двоичном коде пишут: 1 + 1 = 10. Тройка тут обозначится как 10 + 1 = 11. При прибавлении очередной единицы места, очевидно, не хватит уже не только в разряде единиц;, но и в разряде десятков, и мы вынуждены будем записать там нули, но ввести разряд сотен, что опять же можно сравнить с десятичной системой: 99 + 1 = 100. Пять соответственно обозначится как 101, шесть как 110, семь как 111, а восемь как 1000.
Приведем для большей ясности еще несколько примеров: число двенадцать десятичного кода в двоичном превратится в 1100, сорок будет записано в виде 101000, знаменитое число зверя в двоичном коде будет выглядеть просто угрожающе своей длиной: 1010011010, — действительно длинновато, но никуда не деться.
Кто-то, конечно, может сказать, что двоичная система искусственна и на практике неприменима. Здесь мы можем возразить, причем нам даже не придется вновь вспоминать компьютеры, которые по сумме всех операций с нулями и единицами давно уже обошли число операций людей с привычными всем десятичными числами. О компьютерах не стоит вспоминать прежде всего потому, что у Моисея или у Апостола Иоанна вряд ли был компьютер. Но дело в том, что, даже не отдавая себе отчета в этом, и Моисей, и Иоанн, да и любой из наших читателей чуть не ежесекундно пользуется двоичной арифметикой. Область ее использования называется логикой, основой которой являются общие вопросы и, соответственно, ответы: «да» (1) и «нет» (0).
В дополнение к сказанному мы должны отметить, что переход от одной системы отсчета к другой абсолютно устойчив с точки зрения математических операций: сложения, умножения, возведения в степень и даже более сложных действий с числами. Например, в двоичном коде 10х 10 = 100 — а десять и сто в двоичном коде есть соответственно два и четыре в десятичном. Далее, в двоичном коде 100+ 11 = 111, — в десятичном коде та же операция знакома нам под таким видом: 4 + 3 = 7.
Итак, все правила арифметики остаются прежними. Фатальная ошибка наступает тогда, когда мы начинаем вычислять сумму значащих цифр. Пример? — Извольте. Запишем число зверя в разных системах отсчета, а далее вычислим его нумерологическую сумму. Начнем мы с десятичной системы:
666 ->6 + 6 + 6= 18 -> 1+8 = 9
Для девятеричного кода сие число будет выглядеть как 820. Будем, понятное дело, подсчитывать сумму по правилам сложения
820 ->8 + 2 + 0= 11 -> 1+1 = 2
В семеричной системе счисления число зверя запишется так:
1641 -> 1 + 6 + 4 + 1 = 15 -> 1 + 5 = 6
Подсчитаем на всякий случай и сумму двоичного кода: