Читаем Ноль: биография опасной идеи полностью

То, что Даламбер сделал неформально и что позднее формализировали француз Огюст Коши, чех Бернард Больцано и немец Карл Вейерштрасс, заключалось в том, что бесконечная сумма 1 + 1/2 + 1/4 + 1/8 +…+ 1/2n +… была записана как выражение lim (1 + 1/2 + 1/4 + 1/8 +…+ 1/2n) при n, стремящемся к бесконечности. Это очень хитроумное изменение в записи, но в нем заключена вся разница.

Когда в выражении присутствует бесконечность или когда мы делим на ноль, все математические операции, даже такие простые, как сложение, вычитание, умножение и деление, оказываются все закона. Все делается бессмысленным, так что когда вы имеете дело с бесконечным рядом членов, даже знак + делается не таким уж однозначным. Поэтому-то сумма бесконечного числа +1 и –1, как мы видели в начале главы, одновременно равна 0 и 1.

Однако поставив перед рядом знак lim, вы отделяете процесс от его цели. Таким образом, вы избегаете манипулирования бесконечностью и нолями. Так же, как в случае Ахиллеса, каждая из частичных гонок конечна, конечна и каждая частичная сумма под знаком lim. Их можно складывать, делить, возводить в квадрат — делать с ними все что угодно. Правила математики работают, потому что все объекты конечны. Затем, после того как все манипуляции завершены, вы находите предел: экстраполируете и находите, к чему выражение стремится.

Иногда предела не существует. Например, сумма бесконечного числа +1 и –1 предела не имеет. Величина частичных сумм колеблется между 0 и 1; ряд не стремится к предсказуемому значению. Однако в случае гонки между Ахиллесом и черепахой частичные суммы составляют 1; 1,5; 1,75; 1,875; 1,9375 и т.д. — они оказываются все ближе и ближе к 2. Суммы имеют пункт прибытия — предел.

То же самое происходит при нахождении производной. Вместо того чтобы делить на ноль, как делали Ньютон и Лейбниц, современные математики делят на число, которому они позволяют стремиться к нолю. Они производят деление — совершенно законно, поскольку в операции не участвует ноль, — а потом находят предел. Жульнические уловки с исчезновением возведенных в квадрат бесконечно малых, а затем делением на ноль, чтобы найти производную, больше не нужны (см. Приложение С).

Такая логика может показаться мелочной и как аргумент столь же мистической, как «призраки» Ньютона, но на самом деле это не так. Она удовлетворяет жесткому требованию математиками логической строгости. Концепция пределом обладает твердым и последовательным основанием. На самом деле можно распроститься с приведенным выше обсуждением «вызова»: существуют и другие способы определения предела. Можно назвать его схождением двух чисел, предела сверху и предела снизу. (У меня есть замечательное доказательство этого, но, увы, эта книга слишком мала, чтобы оно могло в ней поместиться.) Поскольку пределы логически безупречны, производная, определенная в терминах пределов, тоже делается логически безупречной, и исчисление получает надежный фундамент.

Больше не было необходимости делить на ноль. Из области математики исчез мистицизм, и снова к власти пришла логика. Мир царил до эры Террора.

Глава 6

Близнец бесконечности

Бог создал целые числа, все остальное — дело рук человека.

Леопольд Кронекер

Ноль и бесконечность всегда выглядели подозрительно похожими друг на друга. Умножьте ноль на что угодно, и вы получите ноль. Умножьте бесконечность на что угодно, и вы получите бесконечность. Деление числа на ноль дает бесконечность, деление числа на бесконечность дает ноль.

Прибавление ноля к числу оставляет число без изменения. Прибавление числа к бесконечности оставляет бесконечность без изменения. Это сходство было очевидным со времен Ренессанса, но математикам пришлось ждать до конца Французской революции, прежде чем они открыли большой секрет ноля.

Ноль и бесконечность — две стороны одной медали, равные и противоположные, инь и ян, одинаково могучие противники на противоположных концах области чисел. Причиняющая неприятности природа ноля связана со странной силой бесконечности, и можно понять бесконечное, изучая ноль. Чтобы узнать об этом, математикам пришлось погрузиться в мир воображаемого, странный мир, где окружности — прямые, прямые — окружности, а бесконечность и ноль находятся на противоположных полюсах.

Мнимые

…Прекрасное и удивительное убежище божественного духа — почти земноводное между существующим и не существующим.

Готфрид Вильгельм Лейбниц

Ноль — не единственное число, которое веками отвергалось математиками. Как и ноль, страдавший от предубеждения греков, игнорировались и другие числа — за то, что не имели геометрического смысла. Одним из таких чисел было i, обладавшее ключом к странным особенностям ноля.

Перейти на страницу:

Похожие книги

Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний
Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний

Жизненными циклами всего на свете – от растений и животных до городов, в которых мы живем, – управляют универсальные скрытые законы. Об этих законах – законах масштабирования – рассказывает один из самых авторитетных ученых нашего времени, чьи исследования совершили переворот в науке. «Эта книга – об объединенной и объединяющей системе концепций, которая позволила бы подступиться к некоторым из крупнейших задач и вопросов, над которыми мы бьемся сегодня, от стремительной урбанизации, роста населения и глобальной устойчивости до понимания природы рака, обмена веществ и причин старения и смерти. О замечательном сходстве между принципами действия городов, компаний и наших собственных тел и о том, почему все они представляют собой вариации одной общей темы, а их организация, структура и динамика с поразительной систематичностью проявляют сходные черты. Общим для всех них является то, что все они, будь то молекулы, клетки или люди, – чрезвычайно сложные системы, состоящие из огромного числа индивидуальных компонентов, взаимосвязанных, взаимодействующих и развивающихся с использованием сетевых структур, существующих на нескольких разных пространственных и временных масштабах…» Джеффри Уэст

Джеффри Уэст

Деловая литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Финансы и бизнес
Экономика творчества в XXI веке. Как писателям, художникам, музыкантам и другим творцам зарабатывать на жизнь в век цифровых технологий
Экономика творчества в XXI веке. Как писателям, художникам, музыкантам и другим творцам зарабатывать на жизнь в век цифровых технологий

Злободневный интеллектуальный нон-фикшн, в котором рассматривается вопрос: как людям творческих профессий зарабатывать на жизнь в век цифровых технологий.Основываясь на интервью с писателями, музыкантами, художниками, артистами, автор книги утверждает, что если в эпоху Возрождения художники были ремесленниками, в XIX веке – богемой, в XX веке – профессионалами, то в цифровую эпоху возникает новая парадигма, которая меняет наши представления о природе искусства и роли художника в обществе.Уильям Дерезевиц – американский писатель, эссеист и литературный критик. Номинант и лауреат национальных премий.В формате PDF A4 сохранён издательский дизайн.

Уильям Дерезевиц

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература