Читаем Новая философская энциклопедия. Том второй Е—М полностью

МНОЖЕСТВ ТЕОРИЯ Сложной технической проблемой для n-значных логик остается распознавание полноты для произвольных систем. Выделяются два подхода к решению задачи о полноте. В первом случае ставится вопрос о существовании алгоритма, устанавливающего полноту или неполноту системы функций; во втором рассматривают совокупность всех предполных классов функций в Ря. Система Э{ функций называется предполной в Р, если 9? представляет не полную систему но добавление к SR любой функции f такой, что f Е Ря и f e 9( преобразует Э( в полную систему. Или, в терминах замыкания: SR предполна в Ря, если [ SR]9t/>nH[SRu{f}] = P,raefG Pnfe SR. Важная роль предполных классов функций видна из следующей теоремы, которая формулирует критерий функциональной полноты: система функций SR n-значной логики полна тогда и только тогда, когда она не содержится целиком ни в одном предполном классе. Г. Розенбергом в 1970 было дано описание всех предполных классов в n-значной логике, и хотя число предполных классов я(п) конечно для любого п, однако очень быстрый их рост указывает на малую практическую эффективность предполных классов для решения проблемы полноты. Удивительную связь свойства функциональной предполноты с теорией простых чисел имеет логика Лукасевича Ln. Как было установлено В. К. Финном в 1970, n — 1 является простым числом тогда и только тогда, когда Ln предполно в Ря. Т. о., мы имеем новое определение простого числа. Более того, оказалось возможным построить такие Ln, которые имеют класс общезначимых формул тогда и только тогда, когда n — 1 есть простое число. Последние результаты привели А. С. Карпенко к открытию закона порождения классов простых чисел, притом порождаются все простые числа. К проблеме полноты примыкает задача о базисах, состоящая в указании всех полных в замкнутом классе SR c P подмножеств, никакое собственное подмножество которых уже не полно в 9R, т. е. базисом является минимальная полная независимая система функций, удаление из которой любой функции делает систему неполной. Особую роль играют базисы, состоящие из одной функции, т. е. штрихи Шеффера. Однако наиболее сложной, можно сказать, глобальной задачей для многозначной логики остается описание решетки замкнутых классов данной модели многозначной логики. Для двузначной логики эта задача полностью решена Э. Постом в начале 20-х гг., где установлено, что мощность множества замкнутых классов в Р2 счетна. Позже им дано полное описание решетки замкнутых классов, каждый класс строится эффективно, и показано, что каждый замкнутый класс имеет конечный базис. Эти классы названы классами Поста. Однакос многозначной логикой дело обстоит совсем по-другому. Оказалось, что имеются существенные различия между классической двузначной логикой и многозначной, говорящие о принципиальной несводимости второй к первой. В отличие от /ущя всякого n > 3 существует в Ря замкнутый класс, не имеющий базиса, а такте для всякого n > 3 существует в Рв замкнутый класс со счетным базисом. Непосредственно к этому примыкает следующий результат: для всякого n > 3 Ря содержит континуум различных замкнутых классов, т. е. уже Р3 содержит континуум различных замкнутых классов. Вообще говоря, точная природа такого различия между двузначной и трехзначной логиками неясна. Особый интерес в силу их различных приложений представляют собой бесконечнозначные логики. Исторически первой такой логикой была бесконечнозначная логика Лукасевича Lw (1929), которая определяется следующей матрицей: М = <[0,1];^,~,{1}>,где х —> у = min(l, 1 — х + у), ~х = 1 — х. Почти через тридцать лет L была аксиоматизирована следующим образом: аксиома Йайсберга (4) заменяется аксиомой ((р —> q) —> q)) —> ((q —> p) —> p). Последние десятилетия алгебраические исследования Ьш приобрели исключительный масштаб и можно говорить о новом направлении в алгебраической логике. Другим интересным и весьма важным примером бесконечнозначной логики является интуиционистская логика Н. Еще К, Педель в 1932 показал, что никакая конеч- нозначная матрица не может быть для нее характеристической. В заключение заметим, что ни одно из направлений некласси- ческихлогиктж бурно не развивается, как многозначная логика. Это объясняется всевозможными приложениями и применениями многозначных логик в различных областях науки и техники и особенно в компьютерных науках. Поэтому вопрос о библиографии по многозначной логике заслуживает специального рассмотрения. Литература здесь совершенно необозрима и, по-видимому, имеет тенденцию к экспоненциальному росту. Тем не менее имеется хронологическая, а также хорошо тематизированная библиография в монографии Н. Решера (1969). Р. Вольф (1977) дополнил и довел ее до 1974 с указанием некоторых работ, которые должны были выйти в ближайшем времени. Обширная библиография, включая работы последних лет, содержится в монографии А. С. Карпенко (1997). Важнейшим и основным источником современной литературы по многозначной логике, и в особенности их применению к компьютерным наукам, служат материалы ежегодного международного симпозиума по многозначным логикам (International Symposium on Multiple-\folued Logic), которые проводятся начиная с 1971. В материалах 22-го симпозиума дается обзор и анализ работы первых 21 симпозиумов и приводятся различные статистические данные. Разработана также база данных статей, авторов и тем. Лет.: БочварДА., Финн В. К. О многозначных логиках, допускающих формализацию анализа антиномий, 1.— В кн.: Исследования по математической лингвистике, математической логике и информационным языкам. М., 1972; Они оке. Некоторые дополнения к статьям о многозначных логиках.— В кн.: Исследования по теории множеств и неклассическим логикам. М., 1976; Зиновьев А. А. Философские проблемы многозначной логики. М., 1960; Карпенко А. С. Многозначные логики (монография), в серии «Логика и компьютер», вып. 4. М., 1997; Он оке. Логики Лукасевича и простые числа. М., 2000; Кудрявцев В. Б. О функциональных системах. М., 1981; Он оке. Многозначная логика.— В кн.: Математическая энциклопедия, т. 3. М., 1982; Яблонский С. В. Функциональные построения в k-значной логике.— В кн.: Труды математического института им. В. А. Стеклова, т. 51, 1958; Bok L, Borowik P. Many-valued logics: Theoretical foundations, v. 1. В., 1992; Butler S. W., Butler J. T. Profiles of topics and authors of the International Symposium on Multiple-Wued Logic for 1971 - 1991.- ISMVL, 22th, Sendai., 1992; Computer science and multiple-valued logic: Theory and applications. Amst., 1977 (2nd revised ed. 1984); Epstein G. Multiple-valued logic design: an introduction. Bristol, 1993; KarpenkoA. S. Factor-semantics for n-valued logics.— «Studia Logica», 1983, v. 42, N 2/3; Mahnowski G. Many-valued logics. Oxf., 1993; RescherN. Many-valued logic. N. Y, 1969; Rosser J. A, Turquette A. R. Many-valued logics. Amst., 1952 (2nd ed. 1958); WofR. G. A survey of many-valued logics (1966—1974), in: Modern uses of multiple-valued ю-

Перейти на страницу:

Все книги серии Новая философская энциклопедия.

Новая философская энциклопедия. Том второй Е—М
Новая философская энциклопедия. Том второй Е—М

Новая философская энциклопедия дает РѕР±Р·ор РјРёСЂРѕРІРѕР№ философии во всем богатстве ее основных понятий, произведений, исторических традиций, школ, имен, обобщает достижения СЂРѕСЃСЃРёР№СЃРєРёС… и зарубежных философских исследований за последние десятилетия, является самым полным в отечественной литературе СЃРІРѕРґРѕРј философских знаний на рубеже тысячелетий. Энциклопедия содержит около пяти тысяч статей, авторами которых являются более четырехсот известных ученых - специалистов в различных областях философии.При подготовке данного издания внесены некоторые уточнения и дополнения. Р' частности, в первом томе помещена статья, посвященная 80-летию Р

авторов Коллектив , Вячеслав Семенович Стёпин , Г Ю Семигин

Философия / Энциклопедии / Образование и наука / Словари и Энциклопедии
Новая философская энциклопедия. Том третий Н—С
Новая философская энциклопедия. Том третий Н—С

Новая философская энциклопедия дает РѕР±Р·ор РјРёСЂРѕРІРѕР№ философии во всем богатстве ее основных понятий, произведений, исторических традиций, школ, имен, обобщает достижения СЂРѕСЃСЃРёР№СЃРєРёС… и зарубежных философских исследований за последние десятилетия, является самым полным в отечественной литературе СЃРІРѕРґРѕРј философских знаний на рубеже тысячелетий. Энциклопедия содержит около пяти тысяч статей, авторами которых являются более четырехсот известных ученых - специалистов в различных областях философии.При подготовке данного издания внесены некоторые уточнения и дополнения. Р' частности, в первом томе помещена статья, посвященная 80-летию Р

авторов Коллектив , Вячеслав Семенович Стёпин , Г Ю Семигин

Философия / Энциклопедии / Образование и наука / Словари и Энциклопедии
Новая философская энциклопедия. Том четвёртый Т—Я
Новая философская энциклопедия. Том четвёртый Т—Я

Новая философская энциклопедия дает РѕР±Р·ор РјРёСЂРѕРІРѕР№ философии во всем богатстве ее основных понятий, произведений, исторических традиций, школ, имен, обобщает достижения СЂРѕСЃСЃРёР№СЃРєРёС… и зарубежных философских исследований за последние десятилетия, является самым полным в отечественной литературе СЃРІРѕРґРѕРј философских знаний на рубеже тысячелетий. Энциклопедия содержит около пяти тысяч статей, авторами которых являются более четырехсот известных ученых - специалистов в различных областях философии.При подготовке данного издания внесены некоторые уточнения и дополнения. Р' частности, в первом томе помещена статья, посвященная 80-летию Р

авторов Коллектив , Вячеслав Семенович Стёпин , Г Ю Семигин

Философия / Энциклопедии / Образование и наука / Словари и Энциклопедии

Похожие книги

Этика Спинозы как метафизика морали
Этика Спинозы как метафизика морали

В своем исследовании автор доказывает, что моральная доктрина Спинозы, изложенная им в его главном сочинении «Этика», представляет собой пример соединения общефилософского взгляда на мир с детальным анализом феноменов нравственной жизни человека. Реализованный в практической философии Спинозы синтез этики и метафизики предполагает, что определяющим и превалирующим в моральном дискурсе является учение о первичных основаниях бытия. Именно метафизика выстраивает ценностную иерархию универсума и определяет его основные мировоззренческие приоритеты; она же конструирует и телеологию моральной жизни. Автор данного исследования предлагает неординарное прочтение натуралистической доктрины Спинозы, показывая, что фигурирующая здесь «естественная» установка человеческого разума всякий раз использует некоторый методологический «оператор», соответствующий тому или иному конкретному контексту. При анализе фундаментальных тем этической доктрины Спинозы автор книги вводит понятие «онтологического априори». В работе использован материал основных философских произведений Спинозы, а также подробно анализируются некоторые значимые письма великого моралиста. Она опирается на многочисленные современные исследования творческого наследия Спинозы в западной и отечественной историко-философской науке.

Аслан Гусаевич Гаджикурбанов

Философия / Образование и наука
Том 12
Том 12

В двенадцатый том Сочинений И.В. Сталина входят произведения, написанные с апреля 1929 года по июнь 1930 года.В этот период большевистская партия развертывает общее наступление социализма по всему фронту, мобилизует рабочий класс и трудящиеся массы крестьянства на борьбу за реконструкцию всего народного хозяйства на базе социализма, на борьбу за выполнение плана первой пятилетки. Большевистская партия осуществляет один из решающих поворотов в политике — переход от политики ограничения эксплуататорских тенденций кулачества к политике ликвидации кулачества, как класса, на основе сплошной коллективизации. Партия решает труднейшую после завоевания власти историческую задачу пролетарской революции — перевод миллионов индивидуальных крестьянских хозяйств на путь колхозов, на путь социализма.http://polit-kniga.narod.ru

Джек Лондон , Иосиф Виссарионович Сталин , Карл Генрих Маркс , Карл Маркс , Фридрих Энгельс

История / Политика / Философия / Историческая проза / Классическая проза