595
МОДЕЛИРОВАНИЕ ниями и порою функциями. Для модальных логик СВМ интерпретации обычно используют единственное бинарное отношение достижимости. Логика L называется шкальной, если любая интерпретация с той же системой миров, что у модели L, также является моделью L. Т. о., шкальные логики накладывают ограничения не на отдельные миры, а на их внешние взаимосвязи. Один из интереснейших результатов современной СВМ — перечисление всех суперинтуиционистских и модальных пропозициональных логик, обладающих интерполяционным свойством Крейга: для любой доказуемой импликации А =» В найдется формула С, содержащая лишь термины, общие для А и В, такая, что доказуемы А=> С и С=> В. В работах Л. Л. Максимовой показано, что логик, обладающих свойством Крейга, конечное число. Математическая структура вынуждения, использованная П. Дж. Коэном как промежуточный шаг для построения нестандартных классических моделей теоретико-множественных систем, позднее получила название моделей Крипке для ии- туыционистасой логики. С их помощью решена проблема Гильберта: доказана независимость аксиомы выбора и континуум-гипотезы. Далее, теми же методами установлена невозможность явного построения, в частности, неизмеримого множества действительных чисел и нестандартной модели анализа. Исторически это было одно из первых использований СВМ. Последний класс моделей — ИР. Колмогоровская интерпретация допускает значительную гибкость в классе используемых функционалов, поэтому в ИР используются и алгоритмы, и топологические пространства с непрерывными преобразованиями, и категории, и формальные выводы, и комбинации данных объектов. Наиболее значительные в методологических аспектах результаты, полученные при помощи ИР за последнее время, следующие. Доказана совместимость с интуиционистской математикой моделей брауэровских концепций творящего субъекта и беззаконных последовательностей (см. Интуиционизм) и построены модели вычислимости, основанные на данных концепциях. Т. о., обосновано, что содержательный вычислительный метод может быть представлен как композиция алгоритма, творческого процесса и физических измерений. Доказано, что для многих аксиоматических систем добавление аксиомы выбора к конструктивному анализу и к теории множеств с интуиционистской логикой не нарушает эффективности доказательств. Т. о., аксиома выбора на самом деле не приводит сама по себе к чистым теоремам существования; в данном смысле она концептуально противоречит исключенного третьего закону, который с необходимостью приводит к таким теоремам. Лет.: Кейслер Г., Чэн Ч. Ч. Теория молелей. М., 1977; Максимова Л. Л. Интерполяционные свойства суперинтуиционистских, модальных и позитивных логик.— В кн.: Модальные и интенсиональные логики и их применение к проблемам методологии науки. М., Наука, 1984. Н. Н. Непейвода