Сейчас на Китай приходится более 60 % мирового производства солнечных батарей. Если прибавить сюда китайские компании, выпускающие их в других странах, то получится почти 80 %. Что касается солнечных элементов, основы устройства батареи, то тут на Китай приходится более 70 %. Если говорить о пластинах, из которых производятся элементы, то здесь доля Китая еще выше – почти 95 %. Это значит, что в «зеленой энергетике» Китай уже достиг цели, поставленной в программе «Сделано в Китае 2025», – добиться доминирования в новых технологиях и отраслях промышленности XXI в.
Огромное конкурентное преимущество Китая – это результат действия ряда факторов. Среди них – обширная государственная поддержка и дешевое финансирование; масштабы – более мощные заводы; снижение цен на поликристаллический кремний; близость к цепочкам поставок; стандартизация продуктов и постоянное совершенствование технологий. Мартин Грин указывает на еще один фактор. «Низкие текущие цены на фотоэлектрическую продукцию, – говорит он, – это результат счастливого сочетания событий и персоналий», имея в виду ряд руководителей различных китайских компаний, работавших на разных стадиях своей карьеры с его командами в Австралии. Короче говоря, огромные китайские производственные мощности в сочетании с неослабевающим стремлением к уменьшению издержек, способностью поддержать терпящих убытки и государственной поддержкой занятости привели к гигантскому снижению цен – на 85 % в период с 2010 по 2019 г. Именно это сделало солнечные энергетические установки конкурентоспособными в мировом масштабе[459]
.Китай занял также лидирующие позиции в верхней части цепочки поставок продукции для получения солнечной энергии. В прошлом он был относительно слаб с точки зрения производства поликристаллического кремния «солнечного» качества, являющегося важнейшим сырьем. Сегодня Китай производит почти 60 % поликристаллического кремния в мире, и его доля продолжает расти. Он принимает меры в области создания собственного производства оборудования для выпуска солнечных батарей и уменьшения зависимости от западных поставщиков.
Взлет солнечной энергетики беспрецедентен. Мировая установленная мощность в 2018 г. составила 517 гигаватт, что более чем в 50 раз больше, чем десять лет назад. Если говорить в общем, то такому росту мощности способствовали два фактора. Первый фактор – это колоссальное снижение цен и то, что организация REN, выступающая за использование возобновляемых источников энергии, назвала «удушающим ценообразованием», вызванным перепроизводством солнечных батарей в Китае. Второй фактор – бурно развивающаяся глобальная система стимулов, субсидий и предписаний на национальном, региональном и местном уровнях, требующих увеличения доли электроэнергии, полученной из возобновляемых источников сырья, в энергосистеме. В мировом масштабе в 2017 г. рост мощностей солнечной генерации электроэнергии превысил рост мощностей ее генерации с использованием ископаемых источников и АЭС. Но это требует важной оговорки – процентная доля наработки отличается от мощности. Большая часть ископаемых видов топлива и ядерного топлива являются базовой нагрузкой или могут использоваться таким образом, чтобы соответствовать спросу на электричество в любой данный час. Выработка электроэнергии с помощью солнечных батарей – процесс прерывающийся, зависящий от наличия солнечного света. Фактическая генерация может составлять всего около 20 % от мощности[460]
.Хотя современная ветроэнергетика, подобно солнечной энергетике, берет начало в 70-х гг., ее реальное развитие началось лишь в нынешнем столетии. В 2000 г. общая мощность ветряных электростанций во всем мире составляла всего 17 гигаватт. К 2009 г. она достигла 144 гигаватт. К 2018 г. возросла до 564 гигаватт. Почти 50 % установленной мощности ветроэнергетики приходится на Азию, большая часть из них – на Китай[461]
.Бурному росту ветроэнергетики способствовали те же факторы, которые помогли развитию солнечной энергетики, в первую очередь технический прогресс. Более высокие башни, более длинные лопасти, новые материалы, более сложные системы управления и программное обеспечение, лучшие модели ветра и более точные прогнозы погоды – все это способствовало более мощному преобразованию энергии ветра в электроэнергию. Хотя 96 % мощностей ветроэнергетики расположены на суше, компании отважно уходят на шельф, где дуют более устойчивые и сильные ветры, где можно устанавливать более высокие башни, хотя технические проблемы, вызванные необходимостью противостоять волнам и износу, серьезнее. В настоящий момент более 80 % шельфовых ветроустановок сосредоточено в Европе, преимущественно на берегах и в прибрежных водах Северного моря.