Читаем Новые идеи в философии. Сборник номер 5 полностью

Напротив, те понятия, которые искони руководили эволюцией науки и которым она обязана своей объективной достоверностью, обладают совершенно иной логической структурой. Структура эта, однако, долго оставалась незамеченной и только методологии современной математики удалось вполне выяснить ее специфические особенности.

Выше мы уже указывали на то, в чем современная математика усматривает основную характеристику понятия числа: не в том, что оно является якобы символом отвлеченных от предметов опыта свойств, а в той внутренней закономерности, которая ему свойственна как самостоятельному образованно научного мышления. Она не интересуется количественным значением отдельных чисел, а рассматривает их, прежде всего, как частные случаи известных общих математических отношений, порождающих из себя законосообразно построенные ряды чисел. Итак, основная характеристика числа это – его принадлежность к ряду однородных чисел. Его количественное значение – с этой точки зрения – признак вторичный, относительный, ибо зависит целиком от того места, которое оно занимает в том или другом ряде чисел. Вот почему ряд как целое, как совокупность закономерно связанных между собою чисел, логически первее каждого входящего в него члена (числа), взятого в отдельности. – Каково же математическое значение этих численных рядов? Каждый из них представляет не что иное, как развитие известной математической функции, т. е. содержит в себе совокупность всех тех количественных значений, которые последовательно принимает данная функция в пределах, предначертанных управляющим ею законом. Следовательно, последнюю основу понятия числа составляет понятие математической функции, т. е. законосообразности математических отношений. Все математические, все числовые понятия – по существу функциональные понятия, понятия отношений. Доказательством тому служит вся современная математика. Признание функциональной сущности понятия не только устраняет все затруднения, которые, с абстракционной точки зрения, вызывают понятия бесконечного, иррационального и пр., но выясняет также логическую возможность и даже необходимость полной математической равноправности этих новых видов чисел с конечными рациональными числами. Ведь сущность математической функции зависит не от того или другого доступного ей количественного значения, а исключительно от качественного характера, определяющего ее количественные изменения закона.

Функциональная структура понятий не составляет специфической особенности чистой математики (арифметики, алгебры). Она свойственна в одинаковой мере и ее остальным отраслям, а также области математически обоснованного естествознания. Не только понятие отвлеченного члена, но также и основные понятия геометрии, механики, физики, химии (как, например, понятия пространства, времени, атома, химического элемента) постепенно утрачивают в современной науке (или уже утратили вполне) свой субстанциальный характер и превращаются в функциональные понятия, в понятия отношений. В области геометрии первый шаг в этом направлении сделал Декарт, которому удалось при помощи открытой им аналитической геометрии свести основные отношения пространства на отношения чисел. Впоследствии дифференциальная и проективная геометрии и новейшие учения о пространственных многообразиях высшего порядка завершили этот логический процесс, представив исчерпывающее доказательство тому, что все пространственные образования, равно как и само пространство, целиком сводятся для научной мысли к известным функциональным отношениям, точнее, к различным типам функциональных отношений, находящих свое адекватное выражение в закономерно развивающихся рядах численных значений.

То же самое мы видим в механике. И здесь понятиям пространства и времени приписывается значение не реальных вместилищ сущего, а последних координат той системы отношений, которою определяются все вообще возможные в природе формы движения. – Точно также и понятие атома не служит символом какой-нибудь вещи в себе, а исполняет лишь логическую функцию субстрата, объединяющего собою совокупность тех фундаментальных динамических отношений, на которые разлагаются сложные явления физического мира. Атом физики не есть атом-субстанция, а атом как элемент системы атомов. – Не иначе трактуется физикой и понятие энергии. Научное значение его – не в том, что в нем раскрывается внутренняя сущность материи, а в том, что оно фиксирует известную закономерность (эквивалентность) в соотношении различных групп физических явлений.

Перейти на страницу:

Все книги серии Новые идеи в философии

Похожие книги

Что такое философия
Что такое философия

Совместная книга двух выдающихся французских мыслителей — философа Жиля Делеза (1925–1995) и психоаналитика Феликса Гваттари (1930–1992) — посвящена одной из самых сложных и вместе с тем традиционных для философского исследования тем: что такое философия? Модель философии, которую предлагают авторы, отдает предпочтение имманентности и пространству перед трансцендентностью и временем. Философия — творчество — концептов" — работает в "плане имманенции" и этим отличается, в частности, от "мудростии религии, апеллирующих к трансцендентным реальностям. Философское мышление — мышление пространственное, и потому основные его жесты — "детерриториализация" и "ретерриториализация".Для преподавателей философии, а также для студентов и аспирантов, специализирующихся в области общественных наук. Представляет интерес для специалистов — философов, социологов, филологов, искусствоведов и широкого круга интеллектуалов.Издание осуществлено при поддержке Министерства иностранных дел Франции и Французского культурного центра в Москве, а также Издательства ЦентральноЕвропейского университета (CEU Press) и Института "Открытое Общество"

Жиль Делез , Жиль Делёз , Пьер-Феликс Гваттари , Феликс Гваттари , Хосе Ортега-и-Гассет

Философия / Образование и наука