По-моему, в данном направлении развития стратегически важной технологии энергоснабжения была допущена какая-то принципиальная ошибка. Проект получается дорогой и, по-прежнему, как и урановые ядерные электростанции, радиоактивно опасным, хотя и в 100 раз меньше. Разве нет других методов дешевого и безопасного энергоснабжения? Есть такие методы! В связи с этим, рассмотрим проекты Бориса Васильевича Болотова, Украина, например его «Способ холодного ядерного синтеза», изобретение № 4739016/25 от 14 июля 1989 года. История изобретений Болотова в области трансмутаций химических элементов началась в его детстве. Его отец в 1940-е годы обеспечивал работу радиоузла в Сибири. Он заметил, что даже в суровые морозы, в комнате радиоузла очень тепло, благодаря тому, что ламповый усилитель выделяет тепла намного больше, чем потребляет. Комната площадью 100 квадратных метров, фактически, отапливалась за счет нагрева анодов ламп усилителя, потребляемая мощность которого была всего 200 ватт. Однако, сильный нагрев анодов ламп со временем пропадал, они хорошо работали как радиолампы, но уже не давали избыточного тепловыделения. Болотов нашел ответ на эту загадку, уже когда был студентом. Он изучал химический состав анодов отработанных радиоламп и обнаружил в них примеси металлов, которых там изначально не могло быть. Например, в молибденовом аноде появлялся технеций, соседний химический элемент. Объясняется такое преобразование атомов только при наличии некоторого количества протонов, а именно протоны, как водород, всегда присутствуют в анодах новых ламп, поскольку их высушивают водородом при изготовлении. Таким образом, в начале работы, в аноде новой лампы, под действием бомбардировки анода электронами, протоны остаточного водорода соединяются с атомами металла анода, образуя новый химический элемент, отличающийся на один протон в большую или меньшую сторону.
Техническое решение, найденное Болотовым, имеет аналогии с работами Понса и Флейшмана. В их реакторе также использовался металл, имеющий сродство к водороду, палладий и платина. Насыщение его протонами и есть условие будущего избыточного тепловыделения, которое происходит при трансмутации вещества электрода. Аналогично, в работах группы итальянских ученых под руководством Профессора Росси (Rossi) используется никель, который, при работе реактора, преобразуется в медь с выделением тепла. Никель также обладает сродством к водороду, и способен впитывать протоны.
Болотов получил и другие реакции синтеза в своих экспериментах, и предлагает использовать в его технологии бор, о чем «строители токамаков» еще мечтают в далекой перспективе. Болотов создал химию второго поколения. Простой пример: мы привыкли называть водой двуокись водорода. Существует и более распространенная на земле «вода» – это двуокись лития. Сжатие литиевой воды дает кремний, основной химический элемент планеты. В марте 2011 года, Болотов демонстрировал свой реактор на жидком металле с цирконием. Отличие идей Болотова в том, что он изначально ориентируется на радиационно-безопасные технологии, причем, без использования «силовых методов» удержания плазмы и т. п. Он получает реакции синтеза при плотностях электрического тока менее 1000 Ампер на квадратный миллиметр разряда. При этом из фосфора получается кремний, а из свинца можно получать золото и платину.