На конференции «Новые Идеи в Естествознании», Санкт-Петербург, 1996 год, я докладывал о аналогичных способах получения избыточной энергии, и демонстрировал экспериментальную модель устройства, в котором используется искровой разряд, как часть цепи. Схема устройства показана на рис. 227.
Рис. 227. Схема эксперимента Фролова, 1996 год
Разрядник (зазор) регулируется винтом. В данной схеме нагрузка соединена последовательно с искровым разрядником. Фактически, было показано три состояния данной схемы. Первое: расстояние между электродами больше, чем расстояние пробоя, разряда нет, и нет тока в нагрузке (в лампе накаливания). Амперметр, шкала которого имеет максимальный ток 1A, в таком режиме показывает ток 0,3 Aмпера. При этом потребляемая мощность равна примерно 3 Ватта.
Второе состояние: искровой зазор уменьшается путем регулировки, возникает искровой разряд, лампа мощностью 2 Ватта светится. Мы получаем 2 Ватта в нагрузке, однако, при этом мы не наблюдаем увеличения потребления мощности от источника. Наоборот, амперметр показывает 0,28 Ампер, что означает уменьшение тока потребления при наличии искры в цепи питания нагрузки.
Третье состояние: если отверткой закоротить искровой зазор между электродами, то ток потребления возрастает до 0,58 Ампер, что является обычным явлением для простого трансформаторного режима, при котором подключение нагрузки во вторичной цепи увеличивает ток потребления схемы. Отметим, потребление возрастает соответственно мощности лампы, примерно на 3 Ватта.
«Эффекта пинчевания» тока в такой искре нет, поскольку это требует сотни Ампер. Для малых токов предлагается другое объяснение: заряженные частицы получают дополнительную кинетическую энергию в процессе своего движения на участке искрового зазора между электродами. Это движение является ускоренным, так как оно происходит в электрическом потенциальном поле, как показано на рис. 228. Кинетическая энергия частицы плазмы W2 «в конце пути» будет больше, чем ее начальная энергия W1, так как возрастает ее скорость.