Может показаться весьма удивительным, что при столь существенных различиях в формулировке и основополагающих идеях, оказывается довольно трудно найти наблюдаемые различия между теориями Эйнштейна и теорией, выдвинутой Ньютоном двумя с половиной столетиями раньше. Но если рассматриваемые скорости малы по сравнению со скоростью света
с, а гравитационные поля не слишком сильны (так, что скорости убегания гораздо меньше
с, см. главу 7, «Динамика Галилея и Ньютона»), то теория Эйнштейна по существу дает те же результаты, что и теория Ньютона. Но в тех ситуациях, когда предсказания этих двух теорий расходятся, прогнозы теории Эйнштейна оказываются точнее. К настоящему времени был проведен целый ряд весьма впечатляющих экспериментальных проверок, которые позволяют считать новую теорию Эйнштейна вполне обоснованной. Часы, согласно Эйнштейну, в гравитационном поле идут чуть медленнее. Ныне этот эффект измерен непосредственно несколькими способами. Световые и радиосигналы действительно изгибаются вблизи Солнца и слегка запаздывают для наблюдателя, движущегося им навстречу. Эти эффекты, предсказанные изначально общей теорией относительности, на сегодняшний день подтверждены опытом. Движение космических зондов и планет требуют небольших поправок к ньютоновским орбитам, как это следует из теории Эйнштейна — эти поправки сегодня также проверены опытным путем. (В частности, аномалия в движении планеты Меркурия, известная как «смещение перигелия», беспокоившая астрономов с 1859 года, была объяснена Эйнштейном в 1915 году.) Возможно, наиболее впечатляющим из всего следует считать серию наблюдений над системой, называемой
двойным пульсаром, которая состоит из двух небольших массивных звезд (возможно, двух «нейтронных звезд», см. гл.7 «Черные дыры»). Эта серия наблюдений очень хорошо согласуется с теорией Эйнштейна и служит прямой проверкой эффекта, полностью отсутствующего в теории Ньютона, — испускания
гравитационных волн. (Гравитационная волна представляет собой аналог электромагнитной волны и распространяется со скоростью света
с.) Не существует проверенных наблюдений, которые противоречили бы общей теории относительности Эйнштейна. При всей своей странности (на первый взгляд), теория Эйнштейна работает и по сей день!Релятивистская причинность и детерминизм
Напомним, что в теории относительности материальные тела не могут двигаться быстрее света — откуда, в частности, следует, что их мировые линии всегда должны лежать внутри световых конусов (см. рис. 5.29). (В общей теории относительности ситуацию следует формулировать именно в таком локальном виде. Световые конусы расположены неодинаково, поэтому не имело бы особого смысла говорить, превосходит ли скорость
очень далекойчастицы скорость света здесь.) Мировые линии фотонов проходят
по поверхностисветовых конусов, но мировая линия ни одной частицы не должна лежать
внесветовых конусов. В действительности, должно выполняться более общее утверждение, а именно: ни одному сигналу не разрешается распространяться вне светового конуса.Чтобы понять, почему должно быть именно так, рассмотрим снова картину пространства Минковского (рис. 5.31).
Рис. 5.31.
Сигнал, который распространяется для наблюдателя
Wбыстрее света, для наблюдается
Uраспространяется назад по времени. Ситуация справа (
б) представляет собой ту же ситуацию, что и слева (
a), только перерисованную с точки зрения наблюдателя
U. (Эту перерисовку можно рассматривать как движение Пуанкаре. Сравните с рис. 5.21 — но здесь преобразование от (
a) к (
б) следует понимать в
активном, а не в пассивном смысле.)