Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

Волновая функция каждого фотона распространяется первоначально из источника в точке  Sи (если мы не следим за прохождением фотона через щели) проходит к экрану через обе щели. Однако только небольшая часть волновой функции проходит через щели, поэтому мы можем мысленно рассматривать щели как новые источники, каждый из которых по отдельности испускает волновую функцию. Эти две части волновой функции интерферируют одна с другой так, что когда они доходят до экрана, в одних его точках они суммируются, а в других погашают друг друга. Чтобы выяснить, где волны суммируются и где гасят друг друга, выберем на экране некоторую точку ри рассмотрим прямые, проведенные к точке рот каждой из щелей tu b. Вдоль отрезка tpмы имеем одну винтовую линию, а вдоль отрезка — другую винтовую линию. (Мы также имеем винтовые линии вдоль линий stи sb, но если предположить, что источник находится на одном и том же расстоянии от обеих щелей, то на пути к щелям винтовые линии успеют совершить одинаковое число витков.) Число витков, которые винтовые линии совершат к тому моменту, когда они достигнут экран в точке р, зависит от длины отрезков tpи . Если эти длины отличаются на целое число длин волн, то в точке рвинтовые линии окажутся совмещенными в одномнаправлении относительно своих осей (т. е. = 0°, где определено в предыдущем разделе), так что соответствующие амплитуды сложатся и дадут яркоепятно. Если же эти линии отличаются по длине на целое число длин волн плюс половина длины волны, то в точке рвинтовые линии окажутся совмещенными в противоположныхнаправлениях относительно своих осей ( = 180°), поэтому соответствующие амплитуды погасят друг друга, и мы получим темноепятно. Во всех остальных случаях между смещениями винтовых линий в точке робразуется некоторый угол, поэтому соответствующие амплитуды будут суммироваться некоторым промежуточным образом, и мы получим пятно с промежуточной интенсивностью освещенности (рис. 6.13).

Рис. 6.13.Анализ эксперимента с двумя щелями в терминах штопорообразного представления импульсных состояний фотона

Принцип неопределенности

Большинству читателей приходилось слышать о принципе неопределенности Гейзенберга. Согласно этому принципу невозможно одновременно точно измерить (т. е. увеличить до классического уровня) положение и импульс частицы. Хуже того, существует абсолютный пределпроизведения погрешностей, с которыми могут быть измерены положение и импульс частицы, например, xи р, определяемый неравенством

xр>= h.

Эта формула говорит нам, что чем точнее измерено положение х, тем менее точно может быть определен импульс р, и наоборот. Если бы положение было измерено с бесконечнойточностью, то импульс стал бы совершеннонеопределенным; с другой стороны, если импульс измерен точно, то положение частицы становится полностью неопределенным. Чтобы получить некоторое представление о величине предела, установленного неравенством Гейзенберга, предположим, что положение электрона измерено с погрешностью до нанометра (10 -9м), тогда его импульс стал бы настолько неопределенным, что уже через секунду после измерения бесполезно было бы искать электрон на расстоянии меньше 100 км от того места, где он находился в момент измерения!

Из описаний некоторых измерительных процессов создается впечатление, что это связано с некоторой неточностью, «встроенной» в сам процесс измерения. Согласно этой точке зрения, попытка локализовать электрон в вышерассмотренном эксперименте неизбежно сообщит ему случайный «толчок» такой интенсивности, что электрон, весьма возможно, улетит прочь с огромной скоростью, величина которой оговорена принципом неопределенности Гейзенберга. Из других же описаний мы узнаем, что неопределенность — свойство самой частицы, а ее движению присуща неизбежная случайность, которая означает, что поведение частицы непредсказуемо непосредственно на квантовом уровне. Есть и такие точки зрения, согласно которым квантовая частица есть нечто непостижимое, к чему неприменимы сами понятия классического положения и классического импульса. Ни один из этих подходов мне не нравится. Первый может ввести в заблуждение, второй заведомо неправилен, а третий излишне пессимистичен.

Перейти на страницу:

Похожие книги