Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

Существует математическое название для соотношения между функциями и '. Каждая из этих функций называется преобразованием Фурьедругой — в честь французского инженера и математика Жозефа Фурье (1768–1830). Я ограничусь здесь лишь несколькими замечаниями по поводу преобразования Фурье. Первое замечание: между и 'существует замечательная симметрия. Чтобы перейти от  назад к  ', мы по существу прибегаем к той же процедуре, которую использовали при переходе от  к '. Теперь 'становится объектом гармонического анализа. «Чистые тона» (т. е. штопоры в пространстве импульсов) на этот раз называются конфигурационными состояниями. Каждое положение хопределяет такой «чистый тон» в пространстве импульсов, а величина такого вклада «чистого тона» в дает значение ( x).

Конфигурационное состояние соответствует (в терминах обычного пространства) некоторой функции , имеющей острый пик в рассматриваемой точке х, а это значит, что все амплитуды равны нулю, за исключением амплитуды в данной точке. Такая функция называется дельта-функцией(Дирака), хотя, строго говоря, это — не совсем «функция» в обычном смысле, так как ее значение в точке хбесконечно велико. Аналогичным образом импульсные состояния (винтовые линии в конфигурационном пространстве) порождают дельта-функции в пространстве импульсов (рис. 6.12). Таким образом, оказывается, что преобразование Фурье винтовой линии есть дельта-функция и наоборот!

Рис. 6.12.Дельта-функция в конфигурационном пространстве переходит в штопор в импульсном пространстве и наоборот

Описание в терминах конфигурационного пространства полезно всякий раз, когда требуется произвести измерение возможного положения частицы в пространстве, которое сводится к увеличению до классического уровня эффектов различных возможных положений частицы. (Грубо говоря, фотоэлементы и фотографические пластинки осуществляют измерение положения фотонов в пространстве.) Описание на языке импульсного пространства полезно, когда требуется измерить импульс частицы, т. е. увеличить до классического уровня эффекты различных возможных импульсов. (Эффекты отдачи или дифракции на кристаллах могут быть использованы для измерений импульса.) В каждом случае квадрат модуля соответствующей волновой функции ( или ') дает искомую вероятность результата производимого измерения.

В заключение этого раздела обратимся еще раз к эксперименту с двумя щелями. Мы узнали, что согласно квантовой механике даже одна частица сама по себе должна обладать волновым поведением. Такая волна описывается волновой функцией . Более всего похожи на волны волновые функции импульсных состояний. В эксперименте с двумя щелями мы рассматривали фотоны с определенной частотой; так что волновая функция фотона состояла из импульсных состояний различных направлений, в которых расстояние между соседними витками штопора — длина волны — было одно и то же на протяжении всей винтовой линии. (Длина волны определяется частотой.)

Перейти на страницу:

Похожие книги