Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

О чем в действительности говорит нам описание в терминах волновых функций? Прежде всего напомним наше определение импульсного состояния. Это тот случай, когда импульс известен точно. Кривая имеет вид винтовой линии, всюду остающейся на одном и том же расстоянии от своей оси. И поэтому в любой точке амплитуды различных положений имеют равные квадраты модулей. Таким образом, если производится измерение положения, то вероятность найти частицу в какой-нибудь одной точке такая же, как вероятность найти ее в любой другой точке. Действительно, положение частицы оказывается полностью неопределенным! А как обстоит дело с конфигурационным состоянием? В этом случае -кривая представляет собой дельта-функцию Дирака. Частица точно локализована в том месте, где находится пик дельта-функции, во всех остальных точках амплитуды равны нулю. Импульсные амплитуды лучше всего определять, перейдя в импульсное пространство. В этом случае их '-кривые имеют вид винтовых линий, так что амплитуды различных импульсов все имеют равные квадраты модулей. Результат измерения импульса частицы становится теперь совершенно неопределенным!

Интересно рассмотреть промежуточный случай, когда координаты и импульсы отчасти ограничены, но только лишь в той степени, которая разрешена соотношением неопределенности Гейзенберга. Кривая и соответствующая ей кривая '(являющиеся Фурье-преобразованиями друг друга) для такого случая изображены на рис. 6.14.

Рис. 6.14.Волновые пакеты, локализованные как в конфигурационном пространстве, так и в импульсном пространстве

Обратите внимание на то, что расстояние от каждой из кривых до оси существенно отлично от нуля лишь в весьма малой области. Вдали от этой области кривые очень плотно прижимаются к оси. Это означает, что квадраты модуля заметно отличны от нуля только в очень ограниченной области как в конфигурационном пространстве, так и в импульсном пространстве. В этом случае частица может быть локализована в пространстве, хотя соответствующий пик имеет некоторую ширину; аналогичным образом, импульс также достаточно хорошо определен, поэтому частица движется с достаточно хорошо определенной скоростью, а расплывание пика, характеризующего ее положение в пространстве, происходит не слишком быстро. Такое квантовое состояние принято называть волновым пакетом; обычно волновой пакет считается лучшим квантовотеоретическим приближением к классической частице. Однако из-за «размазанности» в значении импульса (т. е. скорости) следует, что волновой пакет со временем расплывается. И чем более он локализован в начальный момент времени в пространстве, тем быстрее он расплывается.

Эволюционные процедуры U и R

В приведенном выше описании временной эволюции волнового пакета неявно содержится уравнение Шредингера, которое говорит нам о том, как именно эволюционирует во времени волновой пакет. Действительно, уравнение Шредингера гласит, что каждая компонента разложения по импульсным состояниям («чистым тонам») двигается со скоростью, равной величине с2, деленной на скорость классической частицы, имеющей импульс данной компоненты. На самом деле, уравнение Шредингера математически сформулировано гораздо более лаконично. Мы обратимся к его точной записи несколько позднее. Оно по форме несколько напоминает уравнения Гамильтона или Максвелла (будучи тесно связано с обоими) и так же, как и эти уравнения, дает полностью детерминистскуюэволюцию волновой функции, если волновая функция задана в какой-либо один момент времени (см. гл.6 «Уравнение Шредингера; уравнение Дирака»)!

Полагая, что описывает мир в его «реальности», мы не обнаружим никакого индетерминизма, который, как предполагают некоторые, внутренне присущ квантовой теории, — не обнаружим, пока волновая функция удовлетворяет детерминистской эволюции Шредингера. Будем называть это эволюционной U-процедурой. Однако всякий раз, когда мы «производим измерения», увеличивая квантовые эффекты до классического уровня, мы изменяем правила. Теперь вместо Uмы используем совершенно другую процедуру, которую я обозначу R. Она состоит в образовании квадратов модулей квантовых амплитуд для получения классических вероятностей! [145]Именно эта и толькоэта R-процедура привносит неопределенности и вероятности в квантовую теорию.

Перейти на страницу:

Похожие книги