Временная асимметрия в редукции вектора состояния
По-видимому, нам действительно ничего не остается, как заключить, что
ПКТГдолжна быть асимметричной во времени теорией, одним из следствий которой является ГВК(или что-то вроде этого). Как же асимметричная во времени теория может получиться из симметричных во времени ингредиентов: квантовой теории и общей теории относительности? Есть, оказывается, несколько технических способов достижения этой цели, и ни один из них не исследовался достаточно глубоко (см. Аштекар и др. [1989]). Но я собираюсь подойти к проблеме с другой стороны. Как я уже отмечал, квантовая теория «симметрична во времени», но это в действительности относится только к части Uтеории (уравнению Шредингера и т. д.). Обсуждая временную симметрию физических законов в начале главы 7, я умышленно избегал упоминания части R(коллапс волновой функции). Согласно преобладающей точке зрения Rтоже должна быть, по-видимому, симметричной во времени. Своим существованием эта точка зрения может, в частности, быть обязана нежеланию признавать в Rреальный независимый от U«процесс», вследствие чего из временной симметрии Uдолжна бы также вытекать временная симметрия R. Я хотел бы возразить, что этоЯ сначала напомню вам используемую в квантовой механике так называемую процедуру редукции вектора состояния (
R) (см. рис. 6.23). Рис. 8.1 иллюстрирует (условно) характер предполагаемой эволюции вектора состояния | ) в квантовой механике.Рис. 8.1.
Временная эволюция вектора состояния: гладкая унитарная эволюция U (в соответствии с уравнением Шредингера), перемежаемая с разрывной редукцией R вектора состоянияКак видим, этот характер довольно своеобразный: считается, что большую часть времени эволюция происходит в соответствии с
Рис. 8.2.
Более экстравагантное изображение эволюции вектора состояния, описанное вспять по времени. Расчетная вероятность, связывающая наблюдение в точке О с наблюдением в точке О', такая же, как и в случае, изображенном на рис. 8.1, но к чему относится это вычисленное значение?