Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

А как теперь наглядно представить себе уравнения Гамильтона для фазового пространства? Прежде всего следует помнить о том, что на самом деле изображает одна точка Q фазового пространства. Она соответствует некоторому конкретному набору значений всех координат положений х 1, х 2…. и всех координат импульсов р1p 2, …. То есть, точка Q представляет всю нашу физическую систему в определенном состоянии движения, заданного для каждой из образующих ее частиц в отдельности. Уравнения Гамильтона говорят нам о степени быстроты изменения всех этих координат, если их текущие значения известны, т. е. управляют движениями всех отдельных частиц. В переводе на язык фазового пространства уравнения Гамильтона описывают дальнейшее поведение точки Q в этом пространстве, если нам задано ее текущее положение. Таким образом, в каждой точке фазового пространства мы имеем маленькую стрелку (точнее: вектор), которая говорит нам о том, как движется точка Q— а это позволяет описывать эволюцию во времени всей нашей системы. Совокупность всех стрелок образует так называемое векторное поле(рис. 5.11). Следовательно, уравнения Гамильтона определяют векторное поле в фазовом пространстве.

Рис. 5.11. Векторное поле в фазовом пространстве, представляющее эволюцию системы во времени в соответствии с уравнениями Гамильтона

Выясним, как можно интерпретировать в терминах фазового пространства физический детерминизм. В качестве начальных условий при t= 0 мы имели бы конкретный набор значений, заданных для всех координат положений и импульсов, т. е. некоторую определенную точку Q фазового пространства. Чтобы вычислить эволюцию системы во времени, надо просто следовать стрелкам. Таким образом, все поведение нашей системы (независимо от степени ее сложности) описывается в фазовом пространстве всего лишь одной точкой, движущейся по стрелкам, которые она встречает на своем пути. Мы можем считать, что стрелки указывают «скорость» нашей точки Q в фазовом пространстве. Если стрелка «длинная», то точка Q движется быстро, а если «короткая» — то медленно. Чтобы узнать, что наша система делает в момент времени t, мы просто смотрим, куда к этому времени переместилась точка Q, следуя указаниям попутных стрелок. Ясно, что это — детерминистская процедура. Характер движения точки Q полностью определяется гамильтоновым векторным полем.

А как обстоит дело с вычислимостью? Если мы стартовали из вычислимой точки фазового пространства (т. е. из точки, у которой все координаты положения и импульсов являются вычислимыми числами, см. главу 3, «Страна Тор'Блед-Нам»), и с момента начала движения прошло вычислимое время t— то закончим ли мы с необходимостью в точке, которая может быть вычислимым образом получена из t и исходных значений координат? Ответ, очевидно, зависит от выбора функции Гамильтона Н. Действительно, в функцию Н могут входить физические константы— такие, как ньютоновская постоянная тяготения или скорость света, величина которых зависит от выбора единиц; или другие, описывающиеся точными числовыми выражениями — и поэтому, чтобы положительно ответить на поставленный вопрос, необходимо сначала убедиться в том, что все эти постоянные вычислимы. В таком случае я осмелюсь предположить, что для обычных гамильтонианов (т. е. функций H), встречающихся в физике, ответ может быть утвердительным. Но это — всего лишь догадка, и вопрос — интересный вопрос! — остается пока открытым. Надеюсь, что со временем он будет изучен более основательно.

С другой стороны, мне кажется, — по тем же самым причинам, которых я кратко коснулся в связи с бильярдным миром — что этот вопрос не настолько существенен. Ведь чтобы утверждение о невычислимости точки фазового пространства имело смысл, необходимо было бы задавать ее координаты с бесконечной точностью, т. е. со всеми десятичными знаками после запятой! (Число, записываемое конечным количеством десятичных знаков, всегда вычислимо.) Конечный отрезок десятичного разложения любого числа ничего не говорит нам о возможности вычислить оставшуюся часть. Но точность всех физических измерений ограничена возможностями приборов, поэтому они могут дать нам информацию лишь о конечном числе знаков десятичного разложения. Обесценивает ли это само понятие «вычислимого числа» применительно к физическим измерениям?

Перейти на страницу:

Все книги серии Синергетика: от прошлого к будущему

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки