Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

Теперь мы видим, что амплитуда вероятности в конечном счете представляет собой аналог не настоящей вероятности, а скорее «комплексного квадратного корня» из вероятности. Что происходит с ней, когда эффекты квантового уровня увеличиваются настолько, что достигают классического уровня? Напомним, что, манипулируя с вероятностями и амплитудами, мы иногда сталкивались с необходимостью производить их умножение и сложение. Прежде всего заметим, что операция умножения не сопряжена с какими-либо проблемами при переходе от квантовых правил к классическим. Происходит это вследствие замечательного математического факта: квадрат модуля произведения двух комплексных чисел равен произведению квадратов модулей каждого из чисел:

| | 2= | z| 2 | ω| 2.

(Это свойство непосредственно следует из геометрического смысла произведения двух комплексных чисел, приведенного в главе 3, но на языке действительной и мнимой частей z= х+ , ω= u+ iv; это — прекрасное маленькое чудо. Проверьте сами!)

Из этого факта следует, что если в эксперименте с двумя щелями для частицы существует только один маршрут (открыта только одна щель, например t), то рассуждения можно строить «классически», и вероятности получатся одними и теми же, независимо от того, наблюдаем ли мы за прохождением частицы в промежуточных точках ее пути (в щели t) [142]. А квадраты модулей можно будет взять на любой стадии наших вычислений, например,

| A( s, t)| 2х | A( t, p)| 2 = | A( s, t) х A( t, p)| 2.

Ответ — результирующая вероятность — получится одним и тем же.

Но если перед частицей открыт более чем один маршрут (например, если открыты обе щели), то необходимо образовывать сумму, и здесь-то и начинают обнаруживаться характерные особенности квантовой механики. Когда мы образуем квадрат модуля суммы ω+ z двух комплексных чисел ω и z, мы обычно не получаем только лишь сумму квадратов модулей этих чисел; существует дополнительный «поправочный член»:

| ω+ z| 2= | ω| 2+ | z| 2+ 2| ω|| z| cosθ,

где θ— угол, образуемый направлениями на точки z и ω из начала координат на плоскости Аргана (рис. 6.9).

(Напомним, что косинус угла есть отношение «прилежащий к углу катет/гипотенуза» для прямоугольного треугольника. Пытливый читатель, незнакомый с этой формулой, может попытаться самостоятельно вывести ее, используя геометрию, изложенную в главе 3. В сущности эта формула есть не что иное, как слегка «замаскированное» хорошо известное «правило косинуса»!) Именно поправочный член 2| ω|| z| cosθ описывает квантовую интерференцию между квантовомеханическими альтернативами. Значение cosθ заключено между -1 и 1. При θ= 0° мы имеем cosθ= 1, и две альтернативы усиливают друг друга так, что полная вероятность оказывается больше суммы отдельных вероятностей. При θ= 180° мы имеем cosθ= - 1, и две альтернативы стремятся погасить друг друга, в результате чего полная вероятность оказывается меньше суммы отдельных вероятностей (деструктивная интерференция). При θ = 90° мы имеем cosθ= 0, и получается ситуация, промежуточная между двумя упомянутыми выше: две вероятности просто суммируются. Для больших или сложных систем поправочные члены обычно «усредняются», так как «среднее» значение cosθ равно нулю, и мы получаем обычные правила классической вероятности! Но на квантовом уровне эти члены описывают важные интерференционные эффекты.

Рассмотрим эксперимент с двумя щелями, когда обе щели открыты. Амплитуда того, что фотон достигает точки р, равна сумме ω+ z, где

ω= A( s, t) x A( t, p) и z= A( s, b) x A( b, p).

В самых ярких точках экрана имеем: ω= z(так что cosθ= 1), откуда

| ω+ z| 2= | | 2= 4 | ω| 2,

что в 4 раза больше вероятности | ω| 2, когда открыта только верхняя щель, и приводит к увеличению интенсивности потока большого числа фотонов в 4 раза, в полном согласии с экспериментом. В темных точках экрана имеем ω= — z(так что cosθ= - 1), откуда

| ω+ z| 2= | ωω| 2= 0,

т. е. интенсивность равна нулю(деструктивная интерференция!) также в соответствии с наблюдением. Точно посередине между этими точками мы имеем: ω= iz или ω= — iz(так что cosθ= 0), откуда

| ω+ z| 2— | ω± | 2= | ω| 2+ | ω| 2= 2| ω| 2,

что дает вдвое бо́льшую интенсивность освещенности по сравнению с освещенностью только при одной щели (как в случае с классическими частицами). В конце следующего раздела мы узнаем, как рассчитывать, где именно расположены яркие, темные точки и точки с промежуточной интенсивностью освещенности.

Перейти на страницу:

Все книги серии Синергетика: от прошлого к будущему

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки